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ABSTRACT
Learning good joint-behaviors is challenging in multiagent settings
due to the inherent non-stationarity: agents adapt their policies and
act simultaneously. This is aggravated when the agents are asym-
metric (agents have distinct capabilities and objectives) and must
learn complementary behaviors required to work as a team. The
Asymmetric Island Model partially addresses this by independently
optimizing class-specific and team-wide behaviors. However, opti-
mizing class-specific behaviors in isolation can produce egocentric
behaviors that yield sub-optimal inter-class behaviors. This work
introduces the Influence-Focused Asymmetric Island model (IF-
AIM), a hierarchical framework that explicitly reinforces inter-class
behaviors by optimizing class-specific behaviors conditioned on the
expectation of behaviors of the complementary agent classes. An
experiment in the harvest environment highlights the effectiveness
of our method in optimizing adaptable inter-class behaviors.
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1 INTRODUCTION
Multiagent leaning is a promising paradigm to address challenging
problems such as search and rescue [15] and air traffic control
[6, 12]. Coordination in such settings requires agents to learn good
joint-actions [1]. This is particularly challenging in problems with
asymmetric agents (agents with distinct capabilities and objectives)
that must learn diverse generalizable inter-agent relationships [7].

Multi-Fitness Learning (MFL), a hierarchical framework, facil-
itates the discovery of beneficial joint-actions by injecting pre-
trained class-specific behaviors in the team optimization process
[16]. However, pre-trained behaviors can be brittle to changes in
the task dynamics. The Asymmetric island model (AIM) evolves
asymmetric agents to acquire diverse generalizable behaviors by
leveraging a combination of Quality-Diversity (QD) and evolution-
ary optimization [2]. The QD process, known as ‘island’ for each
agent class, allows agents to learn diverse primitive class-specific
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behaviors [8, 14], whereas the evolutionary optimization, known as
‘mainland’, evolves populations of teams to maximize team fitness
across several tasks. Periodic policy migration from the island to
the mainland biases diversity search toward regions of the policy
space that produce useful team behaviors [4]. However, the diver-
sity search is performed for each agent class independently, which
can produce egocentric behaviors that are sub-optimal in teams.

This work introduces Influence-Focused AIM (IF-AIM), a frame-
work that augments AIM via inter-island migrations to reinforce
inter-class behaviors. Each island periodically migrates its highest
performing behaviors to other islands facilitating QD optimization
to learn class-specific behaviors in the presence of other agent
classes. This speeds the flow of information between islands by
removing the need for policies to pass through the mainland. Em-
pirical result in the harvest environment highlights the benefits
of introducing inter-island migrations to produce agents that can
express robust inter-class relationships.

2 BACKGROUND AND RELATEDWORK
Hierarchicalmethods applied tomultiagent learning can partially
address key challenges such as temporal credit assignment and non-
stationarity [3, 5, 9, 11, 13, 17]. Multi-fitness learning (MFL), a two-
tier optimization framework, leverages multiple fitness functions
to learn what matters when [12, 16]. However, defining several
fitness functions for learning diverse behaviors requires domain
knowledge and can potentially lead misaligned objectives.

Asymmetric Island Model (AIM) is a hierarchical method
for evolving asymmetric agents that explicitly maximizes both
agent diversity and team objectives [2]. AIM achieves this via a
combination of distributed Quality Diversity (QD) and evolutionary
algorithms. A QD process for each agent class, called an ‘island’,
evolves a population of policies to maximize a class-specific reward
[8]. An evolutionary algorithm samples policies from the islands
to create a population of teams that is evolved to optimize the
team reward. Periodically, policies from the high-fitness teams are
migrated to the islands to bias QD towards regions of the behavior
space that yield good team behaviors [2]. The policy migration
ensures that the diversity search on the islands is aligned with the
team objective.

3 INFLUENCE-FOCUSED ASYMMETRIC
ISLAND MODEL

This work introduces the Influence-Focused Asymmetric Island
Model (IF-AIM), an extension of the Asymmetric Island Model
that explicitly enables agents to learn efficient interactions with
other agent classes. An island in IF-AIM optimizes a class-specific
behavior for a particular agent class. However, unlike AIM, IF-AIM
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maintains a small non-learning population of all other agent classes
on an island, achieved via periodic inter-island migrations.

𝑚𝑖 =𝑚𝑖−1 + (𝑖 ∗ 𝐿) + 𝐾 (1)
We use a migration schedule given by equation 1, where,𝑚𝑖 is

the number of generations between each migration, and 𝐾 and 𝐿
are hyperparameters that control the migration frequency. For the
experiment in section 4, 𝐾 = 50, 𝐿 = 25 and𝑚0 = 0. Maintaining
non-learning agents of each class on an island ensures that agents
of each class learn in the presence of other agent classes.

An evolutionary optimization process (CCEA [10]), called as the
‘mainland’, samples policies from the islands at each migration,
groups them into teams, and evaluates them on the team task. The
sampling ensures that the behavioral diversity acquired on the
islands permeates to the mainland teams. Similarly, policies from
the highest performing teams on the mainland are migrated to the
islands to bias the diversity search process [2].

4 EXPERIMENTAL PARAMETERS
We adopt the problem introduced in [2]. Agents of two classes, har-
vesters and excavators, must learn to coordinate in order to collect
and clear two points of interests (POIs): resources and obstacles. We
introduce a penalty in reward if a harvester collides with a resource
or if an excavator collides with a resource. IF-AIM is compared
with several baselines: a standard CCEA [10], multi-fitness learning
[16], and the Asymmetric Island Model [2]. The environment has
eight harvesters and excavators each, 16 obstacles and resources.
we report the normalized fitness averaged over 10 statistical trials.
Each agent has an observation radius of five units and uses the den-
sity sensors to capture the density of other agents, resources and
obstacles [2]. The POIs use a radius of two units and density sensors
described in [2]. The length of each episode is 50 time-steps. An
agent’s policy is defined as a fully connected feed-forward neural
network with 2 hidden layers (adopted from [2]).

4.1 Dynamic Reward Penalties
This experiment inspects the effect of increasing reward penalties
for collisions and how that affects the training of IF-AIM compared
to several baselines. When examining the effect of increasing re-
ward penalties, we look not only at the team fitness, but also the
number of generations it takes to learn robust team behaviors. It is
important to note that the learning curves for MFL, in figure 1, do
not show the pre-training required for its class-specific behaviors.

The general trend shown in figure 1 highlights the strength and
weakness of IF-AIM compared with MFL. As MFL is based on learn-
ing from a set of temporally abstracted behaviors, it can plan over
much longer sequences much more quickly than approaches such
as IF-AIM, or AIM, which train policies bootstrapped from primitive
class-specific behaviors. However, MFL relies on intimate domain
knowledge to pre-train diverse behaviors. As the reward penalty
increases (from (a) to (c) in figure 1), the pre-trained behaviors pro-
vided to MFL start to become misaligned with the demands of the
problem. Therefore, while MFL learns its policy the fastest, agents
trained with MFL fail to adapt their class-specific behaviors to ac-
count for changes in the environment. In contrast, IF-AIM takes
longer to produce meaningful behaviors, and for agent classes to

Figure 1: Normalized team fitness for CCEA, MFL, AIM, and
IF-AIM, trained using varying reward penalties. MFL is con-
sistently able to learn the fastest, but its performance de-
grades the most as the reward penalty increases, despite be-
ing provided the most amount of information. IF-AIM takes
longer to learn, it outperforms the baselines in spite of the
change in rewards.

reinforce how to use those behaviors alongside one another on the
mainland, but the learnt behaviors can adapt fluidly via the island
to mainland migrations.

5 DISCUSSION
This work presents the Influenced-Focused Asymmetric Island
Model (IF-AIM), a framework for learning inter-class agent depen-
dencies required to coordinate as robust teams in dynamic environ-
ments. By periodically incorporating non-learning representation
of agent classes, the optimization for each agent class is able to
learn behaviors that are conditioned on the actions of other classes.
While pre-trained temporal abstractions (such as options [11]) are
particularly useful when domain knowledge is available, relying
on them is prone to producing teams that fail when the environ-
ment undergoes change. The migration of policies between the
islands and the mainland ensures that agents trained with IF-AIM
are able to discover and learn inter-class dependencies in response
to changes in the environment.

IF-AIM achieves a balance between learning over pre-trained ab-
stractions (MFL) and learning via independent optimization (AIM).
The islands optimize their corresponding class-specific behaviors.
The inter-island migrations allow for rapid sharing of these learned
behaviors. Initially, there are more improvements to be made on
the class-specific behaviors. Therefore, faster migration (equation
1) ensures that the learning process on each island uses an up-
dated representation of other agent classes. The migration rate is
reduced over the course of training to allow each island to fine-tune
class-specific behaviors. In future work, we will consider nuanced
migration schedules required in problems with potentially conflict-
ing class-specific objectives.
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