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ABSTRACT

Better understanding the natural world is a crucial task with a
wide range of applications. In environments with close proxim-
ity between humans and animals, such as zoos, it is essential to
better understand the causes behind animal behaviour to predict
unusual changes, mitigate their detrimental effects and increase
the well-being of animals. However, the complex social behaviours
of mammalian groups remain largely unexplored. In this work,
we propose a method to build behavioural models using causal
structure discovery and graph neural networks for time series. We
apply this method to a mob of meerkats in a zoo environment and
study its ability to predict future actions and model the behaviour
distribution at an individual-level and at a group level. We show
that our method can match and outperform standard deep learning
architectures and generate more realistic data, while using fewer
parameters and providing increased interpretability.
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1 INTRODUCTION
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pup. with object.

Figure 1: Examples of meerkat behaviours in the Meerkat
Behaviour Recognition Dataset [17].

Understanding non-human animal behaviour is a fundamental
task in ecological research, with wide applications ranging from
unusual behaviour detection [2], population dynamics [14], habitat
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selection analysis [28], and disease spread modelling [5]. One partic-
ular application of behaviour modelling is to monitor the well-being
of animals in zoo environments [18, 22, 23]. The advent of machine
learning has opened up the possibility of simultaneously consid-
ering multiple factors when investigating complex correlations in
animal behaviours [16, 24, 27]. However, learning correlations with-
out recovering the cause and effect knowledge cannot provide a full
understanding of the studied phenomenon [21]. While existing re-
search has largely concentrated on the interplay between behaviour
and environmental factors [27], the cause-and-effect relationships
among behaviours have been less explored. Causal relationships
among behaviours are particularly prominent in social mammals,
like meerkats and chimpanzees [4, 8, 31] and are often interre-
lated in complex ways. In zoo populations, human intervention
adds an additional layer of complexity. Consequently, determin-
ing the causal relationships between behaviours that evolve over
time can be challenging. Causality theory for time series aims to
recover the causal dependencies between variables that evolve
over time [6, 7, 13, 15, 26]. An existing body of work recovers the
causal structure of animal behaviours but only focuses on insect
swarms [12] or bird flocks [3] and does not attempt to model the
complex social interactions of individuals. In this work, we propose
an approach based on Causal Structure Discovery [7] and Neural-
Causal Inference [33] to (1) automatically discover the causal rela-
tionships between the behaviours of individuals in a social group
and (2) model and predict the behaviours of individuals over time.
We apply the proposed method to simulate the behaviours of a
mob of meerkats in an enclosure of the Wellington Zoo. Figure 1
illustrates some examples of the observed behaviours. Our code
is available at: https://github.com/Strong- AI-Lab/behavior-causal-
discovery.

2 CAUSAL BEHAVIOUR MODELLING

We propose an approach based on Causal Structure Discovery and
Causal Inference, summarised in Figure 2. We build a causal model
from time-series with categorical data containing the behaviours
to be learned and contextual information. We model the transition
functions between the behaviours and the causal dependencies
between them (what nodes cause the transition from one behaviour
to the next). The method is divided into two modules: a Causal
Structure Discovery module that recovers the dependencies and
structure of the causal graph, and a Causal Inference module that
learns the transition functions given the data and graph structure.
We use the PCMCI algorithm [19] to discover the causal structure
of the behaviour model. We use a Graph Neural Network (GNN) [10,
20] for the Causal Inference module to take advantage of the causal
structure generated by the Causal Discovery module. The choice of
a GNN is motivated by its ability to represent causal mechanisms
under the Structural Causal Model [32, 33].

3 APPLICATION TO BEHAVIOUR
PREDICTION

we apply our method to the problem of modelling the behaviour of
social animals in Table 1. We study meerkats due to the complex so-
cial behaviours they demonstrate and the availability of behavioural
data. We use the Meerkat Behaviour Recognition Dataset [17], a
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Figure 2: Neural-Causal Model based on Graph Neural Net-
works. The causal graph is built using the Causal Structure
Discovery module (on top, in red) and provided to the GNN
(at the bottom, in green). The GNN aggregates the features
following the causal dependencies and generates a probabil-
ity vector for the next timestep (on the right, in blue).

Table 1: Performance of the model. Acc. is the accuracy on
next-step prediction task. Mutual I is the associated Mu-
tual Information [11, 25] between the prediction and the
ground truth. The higher the better. The LTSM-Discriminator
is tasked to distinguish real samples from simulated samples,
the lower acc. the better (as we aim to fool the discriminator).

Acc. Mutuall. LSTM-Discr.
PCMCIQ 0.287 £0.000 0.004 £0.000  0.873 +£0.005
+GCNg 0.588 +£0.008 0.143 +0.025 0.866 £0.002
+GATg 0.482 £0.015 0.111 £0.009 0.865 +0.002
+GATV2Q 0.567 £0.012 0.116 +£0.004 0.866 +0.001
LSTM 0.565 £0.007 0.190 +£0.009 0.888 +0.002
Transformer 0.343 +0.068  0.145 +0.011 0.887 +£0.001

collection of annotated videos of a mob of meerkats in the Welling-
ton Zoo from static cameras. We simulate individual behaviours
evolving over time using the proposed method and investigate how
accurate the generated series is, compared to the ground truth. We
use several GNN architectures: GCN [10], GAT [30] and GATv2 [1]
with a single GNN layer to represent causal paths only [34]. We com-
pare our model against a Long Short-Term Memory (LSTM) [9] and
a Transformer [29]. To quantify the difference between the ground
truth and the simulated behaviours, we train a LSTM discriminator
model to classify true and counterfeit data.

4 DISCUSSION AND CONCLUSION

We tackle the problem of modelling the behaviours of a group of
meerkats interacting together in a zoo environment using causality
theory and graph neural networks to build an interpretable pre-
diction and generation engine. Our method can compete with and
outperform standard deep learning models with a higher number of
parameters, making more accurate predictions and generating more
realistic simulation data than the baselines. This paper uncovers
some limitations of the proposed and current models, such as the
lack of Information (in Shannon’s definition [11, 25]) learned by
the models. We highlight a discrepancy between accuracy perfor-
mance at the statistical level, and accurate modelling of the inner
mechanisms of the agents.
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