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ABSTRACT
Current MARL benchmarks fall short in simulating realistic sce-
narios, particularly those involving long action sequences with
sequential tasks and multiple conflicting objectives. Addressing
this gap, we introduce Multi-Objective SMAC (MOSMAC)1, a novel
MARL benchmark tailored to assess MARL methods on tasks with
varying time horizons and multiple objectives. Each MOSMAC task
contains one or multiple sequential subtasks. Agents are required
to simultaneously balance between two objectives — combat and
navigation — to successfully complete each subtask. Our evaluation
of nine state-of-the-art MARL algorithms reveals that MOSMAC
presents substantial challenges to many state-of-the-art MARL
methods and effectively fills a critical gap in existing benchmarks
for both single-objective and multi-objective MARL research.
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1 INTRODUCTION
Studies on multi-agent reinforcement learning (MARL) have re-
cently garnered significant achievements in various fields, includ-
ing traffic signal control [4], game-playing [20], and stock-trading
[1]. Despite the achievements, these applications commonly entail
tasks with short horizons and single objectives [20]. In fact, learn-
ing over long horizons is a non-trivial challenge of MARL. In such

1Code is available at https://github.com/smu-ncc/mosmac
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scenarios, challenges like the exploration and temporal credit assign-
ment become increasingly complex compared to their short-horizon
counterparts [9]. In addition, the complexity of the hypothesis space
for optimal value functions scales with the planning horizon [12],
leading to the convergence of action-gaps and trap agents in local
optima. However, currently there is still a scarcity of benchmarks
for examining methods in long-horizon MARL contexts.

This paper presents a MARL benchmark named Multi-Objective
SMAC (MOSMAC), which provides a set of multi-objective MARL
(MOMARL) tasks that scale to various temporal horizons. Building
upon the foundations laid by SMAC [20], SMACv2 [5], and SMAC-
Exp [11], MOSMAC differentiates itself with three distinct features:
varying temporal horizons, multiple objectives, and sequential sub-
task assignments. MOSMAC also incorporates scenarios featuring
complex terrains including plains, canyons, ramps, and high/low
grounds, mirroring real-world scenarios and significantly challeng-
ing multi-agent exploration in a large state-action space. As a result,
MOSMAC provides various interesting scenarios covering the as-
pects that are not included in most of the existing MARL tasks
[2, 3, 18] and benchmarks [5, 11, 20], making it challenging for both
MARL and MOMARL [7, 8, 10, 15, 24] domains.

We evaluate nine MARL algorithms [6, 14, 16, 17, 21–23, 25] on
MOSMAC with the EPyMARL framework [16]. We find that while
several methods exhibit good performance on addressing short-
horizonMOMARL tasks, the long-horizon ones are still challenging,
highlighting the need for more efficient MARL methods.

2 MULTI-OBJECTIVE SMAC (MOSMAC)
The short-horizon MOSMAC contains a set of MOMARL tasks with
stochastic target placements. It contains scenarios with 3, 4, 8, and
12 Siege Tank units in both the ally and adversarial teams. Figure
1(a) shows an example scenario, named 4t, with four ally units, each
controlled by a learning agent. Agents share the winning criteria of
occupying a system-selected strategic position. The ally team wins
the game if all remaining agents can reach the strategic position.
The adversarial units are symmetric to ally units, controlled by the
built-in controller of the StarCraft II game with a difficulty level of
7. Adversarial units are configured to guard the strategic position
and will attack ally units when they are in close proximity. Similar
to SMACv2 [5], units have their default sight and attack ranges, as
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(a) An illustration of the short-horizon MOSMAC, 4t scenario. (b) An illustration of the long-horizon MOSMAC with terrain features.

Figure 1: Illustrations of short-horizon and long-horizon MOSMAC. (a) The strategic position is marked by the dotted red circle, with a center drawn from a
uniform distribution over the 20 × 20 area, marked by the dotted yellow square. The full map size is 32 × 32. (b) The yellow area shows the size of the short-horizon
scenarios’ map, which is depicted in Figure 1(a). 4t_vs_4t and 4t_vs_12t are the names of scenarios with 4 and 12 adversarial units.

in the StarCraft II games. In addition to the default environment
information as in SMAC [20] and SMACv2 [5], i.e., units’ informa-
tion and optional terrain features, agents also perceive the relative
direction and distance towards the strategic position to navigate
effectively. The action space is discrete and contains fourmovement
actions, one attack action, and one stop action. Agents can execute
up to 50 decision-making and action cycles in 3t and 4t games,
while this limit extends to 100 in 8t and 12t scenarios. The games
will be forced to be terminated once agents reach this limit.

Our evaluation takes a single-policy approach [13, 19], where the
utility of multiple objectives is represented by a scalar reward value,
while multi-policy methods [8] can also be applied. Specifically, the
short-horizon MOSMAC contains the following two objectives:

(1) Objective 1 (combat): To maximize the damages to the enemy
units.

(2) Objective 2 (navigate): To minimize the distance between
agents and the target strategic position.

Therefore, the reward functions for Objective 1 and 2 are:

𝑟𝑜𝑏 𝑗1 =
𝑛∑︁
𝑖=1

(𝑟 𝑖𝑎 + 𝑟 𝑖
𝑑
) (1)

and

𝑟𝑜𝑏 𝑗2 =
𝑛∑︁
𝑖=1

𝑟 𝑖𝑟 (2)

respectively, where 𝑟 𝑖𝑎 and 𝑟 𝑖
𝑑
are the rewards for attacking and

destroying enemy units by agent 𝑖 , 𝑟 𝑖𝑟 is the reward for reducing
the Euclidean distance to the strategic position by agent 𝑖 , and 𝑛 is
the total number of agents. The complete step-wise intermediate
reward function 𝑟 for short-horizon MOSMAC is as follows:

𝑟 = 𝛼 × 𝑟𝑜𝑏 𝑗1 + (1 − 𝛼) × 𝑟𝑜𝑏 𝑗2 (3)

where 𝛼 is a weight of preference that indicates the priority [8]
given to Objective 1. Besides 𝑟 , agents will receive 𝑟𝑤 as the terminal
reward for winning the game by occupying the strategic position.

The long-horizon MOSMAC features three sets of subtasks, as il-
lustrated in Figure 1(b). Each set of subtasks is derived by dissecting
a path that commences at the starting position and ends at the final
position, employing segmentation points as intermediate targets.
Consequently, each subtask becomes a short-horizon MOMARL
task akin to short-horizon MOSMAC. Agents need to address a
series of interconnected subtasks, where the completion of one
subtask triggers the beginning of the next. Each episode uniformly
selects a path with a set of subtasks. In total, a full long-horizon
MOSMAC task entails 6-8 subtasks. We expand the map to 128×128
and provide variations including fully flat terrain scenarios and
settings with intricate topographical features. The ally team com-
prises four units, whereas the adversarial team encompasses 0, 4,
or 12 units. To maintain parity in combat capabilities with the ally
team, enemy units are organized into clusters, each with four units.
Ally agents encounter at most one enemy cluster in each episode.

3 RESULTS AND CONCLUSION
This paper introduces MOSMAC, a new MARL benchmark aimed
at challenging MARL algorithms with multi-objective long-horizon
tasks. Through our experiments, we found that existing MARL
methods are able to address short-horizon tasks but struggle when
dealing with sequential tasks that involve multiple objectives over
a longer horizon. This shows the utility of the proposed benchmark
in pushing the performance boundary of the MARL algorithms.
Going forward, we aim to extend MOSMAC with new challenging
scenarios with a more diverse set of units and provide more evalua-
tion results of MARL methods, particularly in areas such as MARL
with hierarchical learning paradigms and MOMARL.
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