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ABSTRACT
Classical multi-agent reinforcement learning (MARL) assumes risk
neutrality and complete objectivity for agents. However, in settings
where agents need to consider or model human economic or social
preferences, a notion of risk must be incorporated into the RL op-
timization problem. This will be of greater importance in MARL
where other human or non-human agents are involved, possibly
with their own risk-sensitive policies. In this work, we consider
risk-sensitive and non-cooperative MARLwith cumulative prospect
theory (CPT), a non-convex risk measure and a generalization of
coherent measures of risk. CPT is capable of explaining loss aver-
sion in humans and their tendency to overestimate/underestimate
small/large probabilities. We propose a distributed sampling-based
actor-critic (AC) algorithm with CPT risk for network aggregative
Markov games (NAMGs), which we call Distributed Nested CPT-
AC. Under a set of assumptions, we prove the convergence of the
algorithm to a subjective notion of Markov perfect Nash equilib-
rium in NAMGs. The experimental results show that subjective
CPT policies obtained by our algorithm can be different from the
risk-neutral ones, and agents with a higher loss aversion are more
inclined to socially isolate themselves in an NAMG.1
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1 INTRODUCTION
Markov game (MG) is a theoretical framework for studying multi-
agent systems (MAS) andmulti-agent reinforcement learning (MARL)
[21, 41]. Conventional risk-neutral MARL in MGs has seen great
advances in recent years [1, 11, 13, 17, 22, 24, 30, 34, 40, 51]. Due to
their internal preferences, agents can integrate a measure of risk
into their RL objective, ushering into the realm of risk-sensitive RL.
Risk in RL can be categorized into two main types based on the risk-
sensitive objective [31]. Implicit risks impose a constraint on the RL
stochastic optimization problem, e.g., variance as risk [32, 36, 45, 46]
and chance constraints [7], while explicit risks directly incorpo-
rate risk into the objective function, e.g., entropic risk predicated
on exponential return [4, 12, 25, 27, 43], coherent risk measures
[2, 8], such as conditional value at risk (CVaR) [37], and cumulative
prospect theory (CPT). Risk-sensitive MDPs governed by Markov
coherent risk measures fall under the domain of robust MDPs [28],
and dynamic programming and policy gradient (PG) techniques
have been proposed for them [5, 6, 16, 26, 35, 38, 44, 47, 52]. CPT [50]
is a non-convex generalization of coherent risk measures and an
alternative to expected utility theory for modeling human decision
making. It applies weighting functions to cumulative probabilities,
separately for positive and negative outcomes, and uses non-linear
utility functions to explains loss aversion in humans and their ten-
dency to overestimate/underestimate small/large probabilities.

Given a real-valued r.v. 𝑋 with distribution P(𝑋 ), a reference
point 𝑥0, two monotonically non-decreasing weighting functions,
𝜔+ : [0, 1] → [0, 1], 𝜔− : [0, 1] → [0, 1], utility functions 𝑢+ :
R+ → R+, 𝑢− : R− → R+, and appropriate integrability assump-
tions, we can define the CPT value using Choquet integrals as
CPTP [𝑋 ] :=

∫ ∞
0 𝜔+ (P(𝑢+ ((𝑋−𝑥0)+) > 𝑥))𝑑𝑥−

∫ ∞
0 𝜔− (P(𝑢− ((𝑋−

𝑥0)−) > 𝑥))𝑑𝑥 ., where (.)+ = 𝑚𝑎𝑥 (0, .) and (.)+ = −𝑚𝑖𝑛(0, .). For
a definition on a discrete r.v., see the complete version of the paper
[14]. Conventional representations of CPT weighting and utility
functions are 𝜔+ (𝑝) = 𝑝𝛾

(𝑝𝛾+(1−𝑝 )𝛾 ) (1/𝛾 ) , 𝜔
− (𝑝) = 𝑝𝛿

(𝑝𝛿+(1−𝑝 )𝛿 ) (1/𝛿 ) ,

and 𝑢+ (𝑥) = 𝑥𝛼 if 𝑥 ≥ 0 and 𝑢− (𝑥) = 𝜆(−𝑥)𝛽 if 𝑥 < 0 [50]. The
parameters 𝛾, 𝛿, 𝛼, 𝛽, and 𝜆 are subjective model parameters that
can differ from person to person based on individual characteristics.

In this work, we consider risk-sensitive MARL with CPT risk
measure in network aggregative Markov games (NAMGs). We de-
rive a policy gradient theorem for CPT MARL as a generalization
of previous PG algorithms for coherent risk measures [6, 44], and
propose a distributed actor-critic algorithm to find CPT-sensitive
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policies for each agent with theoretical convergence guarantees,
and the potential of convergence to a CPT-sensitive Markov perfect
Nash equilibrium (MPNE).

Related Works. In the context of Markov risk measures in
MDPs, CPT is articulated through two distinct formulations. The
first one is the nested structure, wherein the CPT operator is ap-
plied to the cumulative return after each step (action taken) [18–
20], which ensures the existence of a Bellman optimality equation.
Recently, Tian et al. [49] extended this nested formulation to a
multi-agent setting but restricted their approach to deterministic
policies and a centralized value-iteration algorithm. In the second
formulation, the CPT operator is applied solely to the agent’s fi-
nal cumulative return at the end of each episode [15, 33] and does
not accept a Bellman equation, and is therefore approached by
gradient-based policy optimization via offline Monte Carlo sam-
pling [15, 23]. In this work, we opt for the nested formulation and
an AC framework to learn risk-sensitive policies in a distributed
manner in NAMGs (see [14] for a justification).

Network Aggregative Markov Games. An NAMG [9, 10, 29,
39, 42, 48] is an MG denoted by𝑀 = (𝑆, 𝑁 ,𝐴, 𝑅, 𝑃,G, 𝛾, 𝑝𝑠0 ), where
G(N , E) is a communication graph of agents, and the reward func-
tion is a function of agent’s own action and an aggregative function
of the neighbors’ actions, 𝑅𝑖 (𝑠, 𝑎𝑖 , 𝑎−𝑖 ) = 𝑅𝑖 (𝑠, 𝑎𝑖 , 𝜎𝑖 (𝑎−𝑖 )), where
𝜎𝑖 (𝑎−𝑖 ) = ∑

𝑗∈N\𝑖 𝜔𝑖 𝑗𝑎
𝑗 , with𝑤𝑖 𝑗 denoting the weight of the edge

from 𝑗 to 𝑖 .
CPT Risk-Sensitive MARL Objective in NAMGs. Using the

nested CPT formulation, the objective of the risk-sensitive agent 𝑖
in an NAMG will be equivalent to

max
𝜋𝑖

𝑉 𝑖
𝜋 (𝑠0 ) = max

𝜋𝑖
CPT

𝜋𝑖 (𝑎𝑖0 |𝑠0 )×P(𝜎
−𝑖
0 |𝑠0 )×P(𝑠1 |𝑠0,𝑎0 )

[
𝑅𝑖 (𝑠0, 𝑎0 )+𝛾𝑉 𝑖

𝜋 (𝑠1 )
]
.

(1)

2 DISTRIBUTED NESTED CPT ACTOR-CRITIC
We derive a gradient expression for the Markov dynamic CPT risk
measure in NAMGs, ∇𝑉 𝑖

𝜋𝜃
(𝑠0) (the proof of theorems are available

in the complete version [14]).

Theorem 1. (Nested CPT Policy Gradient) Given Assumption 1 (see
[14]), the gradient of the CPT return for agent 𝑖 ,𝑉 𝑖

𝜋𝜃
(𝑠0), with respect

to the policy parameter 𝜃𝑖 is

∇𝑉𝑖
𝜋𝜃
(𝑠0 ) ∝E𝜇𝑖𝑐𝑝𝑡 (𝑠 )

[ ∑︁
𝑎,𝑠′

𝜕𝜙

𝜕 (𝜋𝑖
𝜃
(𝑎𝑖 |𝑠 ) P(𝜎−𝑖 |𝑠 ) P(𝑠′ |𝑠,𝑎) )

P(𝜎−𝑖 |𝑠 ) P(𝑠′ |𝑠,𝑎) (∇𝜋
𝜃𝑖
(𝑎𝑖 |𝑠 ) )𝑢 (𝑅𝑖 (𝑠,𝑎𝑖 , 𝜎−𝑖 , 𝑠′ ) +𝛾𝑉𝑖

𝜋𝜃
(𝑠′ ) )

]
,

(2)

where distribution 𝜇𝑖𝑐𝑝𝑡 is a subjective steady-state probability distri-
bution of the MDP.

For the approximation scheme to estimate the subjective steady-
state distribution and the gradient based on Algorithm 1 in Jie et
al. [15] see the complete version [14]. Having a policy gradient
theorem and a corresponding gradient approximation scheme, we
propose Algorithm (1) to learn CPT-sensitive policies in NAMGs.
Convergence. Convergence of the critic follows from Theorem 6
of Lin et al. [19], as the 𝑇𝐷 (0) CPT operator,

𝑇𝑐𝑝𝑡𝑉𝜋𝜃 (𝑠) = CPT𝜋𝜃 (. |𝑠 )×P(. |𝑠,𝑎)
[
𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋𝜃 (𝑠′)

]
is a sup-

norm contraction (see [14] for assumptions and details).

Algorithm 1 Distributed Nested CPT Actor-Critic

1: For each agent 𝑛, repeat until convergence:
2: Sample 𝑎𝑛𝑡 from 𝜋𝜃𝑛𝑡

(.|𝑠𝑡 ). Execute 𝑎𝑛𝑡 and observe 𝑟𝑛𝑡 , 𝑠𝑡+1,
and 𝜎−𝑛𝑡 . Push (𝑟𝑡 , 𝑠𝑡+1, 𝜎−𝑛𝑡 ) to 𝐸𝑥𝑝𝐷𝑖𝑐𝑡𝑛 (𝑠𝑡 , 𝑎𝑛𝑡 , 𝜎−𝑛𝑡 ).

3: Critic value estimation:
4: for each 𝑖 = 1, 2, ..., 𝑛𝑚𝑎𝑥 , do
5: Sample 𝑎𝑛𝑡 from 𝜋𝜃𝑛𝑡

(.|𝑠𝑡 ) and construct �̂�−𝑛𝑡 by observing
neighbors. Sample (𝑟𝑛𝑡 , 𝑠𝑡+1) from 𝐸𝑥𝑝𝐷𝑖𝑐𝑡 (𝑠𝑡 , 𝑎𝑛𝑡 , �̂�−𝑛𝑡 ) or a
simulator of the environment.

6: Let 𝑋𝑖 = 𝑟𝑛𝑡 + 𝛾𝑉𝑛
𝜋𝜃
(𝑠𝑡+1). If the sample came from a simu-

lator, push (𝑟𝑛𝑡 , 𝑠𝑡+1) to 𝐸𝑥𝑝𝐷𝑖𝑐𝑡 (𝑠𝑡 , 𝑎𝑛𝑡 , �̂�−𝑛𝑡 ).
7: end for
8: Estimate 𝑉𝑛

𝜋𝜃𝑡
(𝑠𝑡 ) using array of 𝑋 and Algorithm 1 in [15].

9: Critic step:
10: 𝛿𝑡 := 𝑉𝑛

𝜋𝜃𝑡
(𝑠𝑡 ) −𝑉𝑛

𝜋𝜃𝑡
(𝑠𝑡 ), 𝑉𝑛

𝜋𝜃𝑡
(𝑠𝑡 ) ← 𝑉𝑛

𝜋𝜃𝑡
(𝑠𝑡 ) + 𝛼𝑐𝑟,𝑡𝛿𝑡 .

11: Actor step: Compute ∇𝑉𝑛
𝜋𝜃𝑡
(𝑠0) using the gradient estima-

tion scheme and then 𝜃𝑛
𝑡+1 := 𝜃𝑛𝑡 + 𝛼𝑎𝑐,𝑡∇𝑉𝑛

𝜋𝜃𝑡
(𝑠0).

Theorem 2. (Convergence of the actor) Given Assumptions 4 and 5
in [14] and learning steps such that,

∑∞
𝑡=0 𝛼𝑎𝑐,𝑡 = ∞,

∑∞
𝑡=0 𝛼𝑐𝑟,𝑡 = ∞,∑∞

𝑡=0 𝛼
2
𝑐𝑟,𝑡 < ∞, ∑∞𝑡=0 𝛼2𝑎𝑐,𝑡 < ∞, lim𝑡→∞

𝛼𝑎𝑐,𝑡
𝛼𝑐𝑟,𝑡

= 0, Algorithm (1)
converges to the unique CPT-sensitive Markov perfect Nash equilib-
rium of the NAMG, asymptotically.

Given the asymptotic proofs, we apply Theorem 1.1 of Borkar
[3], which implies asymptotic convergence of the AC algorithm.
Note that Assumptions 4 and 5 [14] are hard to verify and if they
do not hold, we can only ensure convergence to locally optimal
policies.

3 NUMERICAL EXPERIMENT
We construct a risk-sensitive NAMGwith an interpretable design to
measure the effect of loss aversion on CPT-sensitive agents. In the
NAMG (N = 4,S = {0, 1, 2, 3, 4},A = {0, 1, 2}), the reward func-
tion is defined as 𝑅𝑖 (𝑠, 𝑎𝑖 , 𝜎𝑖 (𝑎−𝑖 )) = 𝑅𝑖

𝑠𝑒𝑙 𝑓
(𝑠) + 𝜎𝑖 (𝑎−𝑖 )𝑅𝑖𝑐𝑜𝑚 (𝑠)𝑎𝑖 ,

with 𝑅𝑠𝑒𝑙 𝑓 (𝑠, 𝑎𝑖 ) ∼ 𝑁 (0.5, 0.1) and 𝑅𝑖𝑐𝑜𝑚 (𝑠) ∼ 5 ·𝑈 (−0.5, 0.5), and
𝜎𝑖 (𝑎−𝑖 ) = 1

𝑁−1 (
∑

𝑗∈N\𝑖 𝑎 𝑗 ). This setup implies a high risk for the
agent if it decides to take an action greater than 𝑎𝑖 = 0, become so-
cially involved with its neighboring community and tie its received
reward to their actions. Figure 1 shows the convergence results and
the probability of choosing 𝑎 = 0 (a quantitative indicator of social
conservatism) which is proportional to the loss-aversion level of
the agents in the community.

Figure 1: Left: mean converged policies over eight independent runs for different loss aversion
scenarios. Scenario 1: all agents risk-neutral, scenario 2: all agents risk-sensitive (𝜆 = 2.6), scenario 3: only
Agent 1 is risk-sensitive (𝜆 = 2.6), scenario 4: Agent 1 has a higher loss aversion coefficient (𝜆 = 3.2) than
others (𝜆 = 2.6). Right: the state value of 𝑠0 for scenario 2 over iterations.
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