
Indirect Credit Assignment in a Multiagent System
Extended Abstract

Everardo Gonzalez
Oregon State University
Corvallis, United States

gonzaeve@oregonstate.edu

Siddarth Viswanathan
Cal Poly State University

San Luis Obispo, United States
sviswa01@calpoly.edu

Kagan Tumer
Oregon State University
Corvallis, United States

kagan.tumer@oregonstate.edu

ABSTRACT
Learning in a multiagent system requires structural credit assign-
ment to distill system performance into agent-specific feedback.
Fitness shaping methods largely isolate agent credit, but struggle
when an agent’s actions do not directly affect system feedback.
This work introduces D-Indirect, a fitness shaping method that
gives credit for both direct actions and actions that have an indirect
impact on the system’s performance. We demonstrate the effec-
tiveness of D-Indirect in a simulated shepherding scenario and our
results show that learningwith D-Indirect significantly outperforms
learning with the standard difference evaluation and the system
evaluation when agents indirectly impact system performance.

KEYWORDS
Fitness Shaping; Reward Shaping; Swarm Shepherding
ACM Reference Format:
Everardo Gonzalez, Siddarth Viswanathan, and Kagan Tumer. 2024. Indirect
Credit Assignment in a Multiagent System: Extended Abstract. In Proc. of
the 23rd International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS,
3 pages.

1 INTRODUCTION
Multiagent systems require agents to cooperate in order to maxi-
mize performance from a system evaluation function. These sys-
tems are well suited for scenarios such as search and rescue [8, 12],
oil spill cleanup [9, 14], and traffic congestion [13]. Learning to coor-
dinate in a system like this is difficult because the system evaluation
captures the performance of the system overall, not of individual
agents. This creates the problem of structural credit assignment,
which is ensuring that each agent receives feedback based on its
individual actions [1, 10].

Fitness shapingmethods help remedy the structural credit assign-
ment problem. The difference evaluation in particular shapes the
system evaluation for an agent based on how that agent’s actions
impacted the system evaluation function [1, 4]. This largely isolates
credit for individual agents. However, the difference evaluation
cannot assign credit for actions that indirectly map to the system
evaluation. For instance, if an agent only takes actions to enable
other agents to increase system performance, then the difference
evaluation would provide no feedback for that agent.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

This work introduces a new fitness shaping method: “D-Indirect”.
D-Indirect uses the same principle as the difference evaluation, but
also accounts for indirect credit assignment. This gives an agent
feedback based on both its own actions as well as the actions of
other agents that were influenced by that agent. The key insight is
that even if an agent’s actions do not directly map to the system
evaluation, these actions could still impact the system evaluation
downstream.We can capture this indirectmapping by incorporating
agent-to-agent interactions in order to make sure these actions are
appropriately rewarded. The key contribution of this work is D-
Indirect, a fitness shaping method that provides an agent with an
individual feedback signal for its overall contribution to a system
including its influence on other agents.

2 BACKGROUND
The difference evaluation is a fitness shaping method that computes
direct credit assignment in a multiagent system and has successfully
improved performance in various domains [1–3]. By comparing
the system evaluation to a counterfactual evaluation with agent 𝑖’s
actions removed, we can isolate agent 𝑖’s direct impact on system
performance. This is shown below.

𝐷𝑖 = 𝐺 (𝑧) −𝐺 (𝑧−𝑖 ∪ 𝑐𝑖) (1)

where 𝐷𝑖 is the difference evaluation for agent 𝑖 , 𝐺 (𝑧) is the
system evaluation with all agents’ actions, and 𝐺 (𝑧−𝑖 ∪ 𝑐𝑖) is the
counterfactual evaluation with agent 𝑖’s actions replaced with null
actions 𝑐𝑖 . The structure of 𝐷 is powerful because it gives an agent
feedback that is both sensitive to that agent’s actions and aligned
with 𝐺 . The issue with 𝐷 is that it requires a direct mapping from
agent 𝑖’s actions to the output of 𝐺 . If an agent’s actions do not
directly affect the calculation of the system evaluation, then 𝐷

provides no useful feedback.

3 D-INDIRECT
D-Indirect borrows the structure of 𝐷 , and modifies it in order to
compute indirect credit assignment in a multiagent system. Rather
than simply removing agent 𝑖 in the counterfactual evaluation, D-
Indirect removes agent 𝑖 as well as other agents that were influenced
by agent 𝑖 . The motivating idea is that even if an agent’s actions do
not directly impact the system evaluation, that agent can still have
important interactions with other agents that we can measure as
“influence”. This makes it so that if agent 𝑖 takes actions that enable
agent 𝑖′’s actions to have a direct impact, then agents 𝑖 and 𝑖′ both
get credit for those actions.

We represent D-Indirect as 𝐷𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 , and compute it by taking
Equation 1 from the standard difference evaluation and modifying
the counterfactual system evaluation. Rather than replacing only

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2288

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

agent 𝑖 with a counterfactual, agents in the set 𝐹𝑖 are replaced with
a counterfactual. 𝐹𝑖 is the set of agent 𝑖 and agents influenced by
agent 𝑖 . We compute 𝐷𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 according to the following equation.

𝐷𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡
𝑖 = 𝐺 (𝑧) −𝐺 (𝑧−𝐹𝑖 ∪ 𝑐𝐹𝑖) (2)

In this work, we use a null counterfactual for 𝑐𝐹𝑖 , so actions from
agents 𝐹𝑖 are simply removed. 𝐹𝑖 is determined by an influence
function that computes which agents were influenced by agent 𝑖 ,
and must be defined according to how agents interact in the domain.

4 EXPERIMENTAL SETUP
We set up our experiment in the multiagent multi-POI shepherd-
ing domain. Shepherd agents must learn to guide preprogrammed
(non-learning) sheep agents to various points of interest (POIs)
in order to maximize 𝐺 . The challenge is that only sheep agents’
actions directly impact 𝐺 , so shepherd agents must learn despite
having no direct impact on system performance. The sheep behave
according to Reynold’s flocking behaviors [11]. The computation
of 𝐺 is shown below.

𝐺 (𝑠𝑓 𝑖𝑛𝑎𝑙) =
1
𝑝

∑︁
𝑗

1
min𝑖 (𝑑𝑖𝑠𝑡 (𝑠ℎ𝑒𝑒𝑝𝑖 , 𝑃𝑂𝐼 𝑗))

(3)

𝐺 is evaluated based on the final state of the system after one
episode containing 200 timesteps. 𝑠𝑓 𝑖𝑛𝑎𝑙 includes the final positions
of all shepherd and sheep agents in the system, and 𝑝 is the number
of POIs. The summation is across all POIs and sheep 𝑖 is the closest
sheep agent to POI 𝑗 . In order to replace the actions of an agent 𝑖
or set of agents 𝐹𝑖 with a null counterfactual to compute𝐺 (𝑧𝑖 ∪ 𝑐𝑖)
or 𝐺 (𝑧−𝐹𝑖 ∪ 𝑐𝐹𝑖), respectively, we remove the final state of those
agents from the computation of 𝐺 shown above. This is equivalent
to replacing the agents’ actions because agents begin in the same
initial state at the beginning of every episode.

The map has an (X,Y) size of (110, 100). Shepherd and sheep
agents are placed in 10 pairs near the bottom Y edge of the map.
10 POIs are scattered according to a uniform distribution from
(10,30) to (100, 90). Each shepherd must move a short distance to
begin influencing its nearest sheep agent, and then must maintain
influence over that sheep agent to bring it towards a POI. To achieve
the maximum score of 𝐺 = 1, each shepherd would have to bring
one sheep to one POI. The set 𝐹𝑖 for shepherd agent 𝑖 includes that
shepherd agent as well as the sheep agents that remained closest
to that particular shepherd.

The shepherd policies are learned using a Cooperative Coevo-
lutionary Algorithm (CCEA) [5–7]. Each shepherd agent evolves
a population of 50 neural networks with 2 layers and 9 units per
layer. For evaluation, each shepherd policy is placed on a randomly
formed team without replacement, and scored according to the
fitness shaping method: 𝐺 (no shaping), 𝐷 , or 𝐷𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 . Selection
is done according to n-elites with binary tournament selection. The
top 5 policies of a shepherd’s population are added to the new
population, and the higher performing of two randomly chosen
policies is mutated and added until the new population is filled. An
additional team is formed using the highest performing policy of
each population to evaluate the system performance.

Each trial of the CCEAwas run for 500 generations. Each shaping
method (𝐺 , 𝐷 , and 𝐷𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡) was used for 20 independent trials.

5 RESULTS AND DISCUSSION
Figure 1 shows the average performance and standard error for each
shaping method. Symbols are included to represent average per-
formance every 100 generations to help provide clarity. 𝐷𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡

results in higher performing joint policies for the shepherd agents
than 𝐺 or 𝐷 . 𝐷𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 outperforms 𝐺 because it gives each shep-
herd agent individualized feedback based on how its actions influ-
enced sheep agents to move towards POIs. On the other hand, 𝐺
provides each shepherd agent with the entire system feedback, so
there is no distinction between which agents contributed to the
system and which did not. Instead, each shepherd agent is evaluated
based on how its randomly assigned team performed rather than
how that specific agent performed. The shepherd agents can still
learn with𝐺 , but not as effectively as with 𝐷𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 . Learning with
𝐷 results in consistently useless joint policies because there is no
direct mapping from shepherd agents’ actions to𝐺 . This means that
𝐷 consistently evaluates to 0 for each shepherd’s policy because
there is no difference in the computation of 𝐺 when a shepherd
agent’s actions are removed.

Figure 1: Learning curves with different fitness shapingmeth-
ods.We see that𝐷𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 learnsmuch faster than𝐺 , and𝐷 re-
sults in no learning. This is because 𝐷𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 gives shepherd
agents feedback based on their indirect impacts to system
performance whereas𝐺 provides no shaping, and 𝐷 provides
no feedback for shepherd agents.

D-Indirect makes it possible to address structural credit assign-
ment for indirect actions. By accounting for how an agent’s actions
influence other agents, D-Indirect gives that agent credit for those
influencing actions that would otherwise be ignored in shaping. Fu-
ture work should investigate further how agent-to-agent influence
can be leveraged for more effective fitness shaping.

ACKNOWLEDGMENTS
This work was partially supported by the National Science Foun-
dation with grant No. CNS-1950927 and the Air Force Office of
Scientific Research with grant No. FA9550-19-1-0195.

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2289

REFERENCES
[1] Adrian Agogino and Kagan Tumer. 2004. Efficient Evaluation Functions for

Multi-rover Systems. In Genetic and Evolutionary Computation – GECCO 2004,
Kalyanmoy Deb (Ed.). Springer, Berlin, Heidelberg, 1–11.

[2] Adrian K. Agogino and Kagan Tumer. 2008. Analyzing and visualizing multiagent
rewards in dynamic and stochastic domains. Autonomous Agents and Multi-Agent
Systems 17, 2 (Oct. 2008), 320–338. https://doi.org/10.1007/s10458-008-9046-9

[3] Adrian K Agogino and Kagan Tumer. 2012. A multiagent approach to managing
air traffic flow. Autonomous Agents and Multi-Agent Systems 24 (2012), 1–25.

[4] Mitchell K Colby and Kagan Tumer. 2012. Shaping fitness functions for coevolving
cooperative multiagent systems. Autonomous Agents and Multi-Agent Systems 1
(2012), 425–432.

[5] Joshua Cook and Kagan Tumer. 2021. Ad hoc teaming through evolution. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion
(Lille, France) (GECCO ’21). Association for Computing Machinery, New York,
NY, USA, 89–90. https://doi.org/10.1145/3449726.3459560

[6] Joshua Cook and Kagan Tumer. 2022. Fitness shaping for multiple teams. In
Proceedings of the Genetic and Evolutionary Computation Conference (Boston,
Massachusetts) (GECCO ’22). Association for Computing Machinery, New York,
NY, USA, 332–340. https://doi.org/10.1145/3512290.3528829

[7] Joshua Cook, Kagan Tumer, and Tristan Scheiner. 2023. Leveraging Fitness Critics
To Learn Robust Teamwork. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference (Lisbon, Portugal) (GECCO ’23). Association for Computing Ma-
chinery, New York, NY, USA, 429–437. https://doi.org/10.1145/3583131.3590497

[8] Daniel S. Drew. 2021. Multi-Agent Systems for Search and Rescue Applications.
Current Robotics Reports 2, 2 (June 2021), 189–200. https://doi.org/10.1007/s43154-

021-00048-3
[9] Ellips Masehian and Mitra Royan. 2015. Cooperative Control of a Multi Robot

Flocking System for Simultaneous Object Collection and Shepherding. In Compu-
tational Intelligence, Kurosh Madani, António Dourado Correia, Agostinho Rosa,
and Joaquim Filipe (Eds.). Springer International Publishing, Cham, 97–114.

[10] Aida Rahmattalabi, Jen Jen Chung, Mitchell Colby, and Kagan Tumer. 2016. D++:
Structural credit assignment in tightly coupled multiagent domains. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,
4424–4429. https://doi.org/10.1109/IROS.2016.7759651

[11] Craig W. Reynolds. 1987. Flocks, herds and schools: A distributed behavioral
model. In Proceedings of the 14th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’87). Association for Computing Machinery,
New York, NY, USA, 25–34. https://doi.org/10.1145/37401.37406

[12] Samy A. Shedied. 2013. Optimal trajectory planning for the herding problem: a
continuous timemodel. International Journal of Machine Learning and Cybernetics
4, 1 (Feb. 2013), 25–30. https://doi.org/10.1007/s13042-012-0071-2

[13] Kagan Tumer, Zachary T Welch, and Adrian Agogino. 2008. Aligning social
welfare and agent preferences to alleviate traffic congestion. In Proceedings of
the 7th International Joint Conference on Autonomous Agents and Multiagent
Systems - Volume 2 (Estoril, Portugal) (AAMAS ’08). International Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC, 655–662.

[14] Xudong Ye, Bing Chen, Pu Li, Liang Jing, and Ganning Zeng. 2019. A simulation-
based multi-agent particle swarm optimization approach for supporting dynamic
decision making in marine oil spill responses. Ocean & Coastal Management 172
(2019), 128–136. https://doi.org/10.1016/j.ocecoaman.2019.02.003

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2290

https://doi.org/10.1007/s10458-008-9046-9
https://doi.org/10.1145/3449726.3459560
https://doi.org/10.1145/3512290.3528829
https://doi.org/10.1145/3583131.3590497
https://doi.org/10.1007/s43154-021-00048-3
https://doi.org/10.1007/s43154-021-00048-3
https://doi.org/10.1109/IROS.2016.7759651
https://doi.org/10.1145/37401.37406
https://doi.org/10.1007/s13042-012-0071-2
https://doi.org/10.1016/j.ocecoaman.2019.02.003

	Abstract
	1 Introduction
	2 Background
	3 D-Indirect
	4 Experimental Setup
	5 Results And Discussion
	Acknowledgments
	References

