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ABSTRACT
Exascale computing (1018 FLOPS) officially arrived in 2022 when
Oak Ridge’s Frontier achieved that performance benchmark, and
other countries seek their own exascale capabilities. High-end com-
puting is typically used by the natural sciences, but empirical Agent-
Based Social Simulation (ABSS) is a social science application. Em-
pirical ABSS has a long history, but was prominent during the
Covid crisis. In future crises, policy options could be evaluated
within rapid policy design windows using exascale computing. We
report on a group model-building exercise, co-constructing a causal
loop model, to explore visions of the potential of exascale comput-
ing in ABSS, identifying potential use cases, capabilities, capacity
requirements and threats.
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1 INTRODUCTION
We report here on our engagement with the empirical Agent-Based
Social Simulation (ABSS) community on how exascale computing
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could support their needs, and how it might affect future directions
for ABSS research. Use of High Performance Computing (HPC) is
rare in the ABSS community. Social scientists face a steep learning
curve simply to build a working agent-based model in the first place
[1, 2]. Though it need not necessarily be so, HPC environments
require even more computing skills to access. Even then, agent-
based models have features (such as varying population sizes) that
make their memory and CPU-time unpredictable, while access to
and continuing use of HPC facilities is usually predicated on being
able tomake such predictions reliably [9]. These two points combine
to exacerbate a third, cultural issue around HPC regarding the
suitability of the code and the scientific problem it is investigating
for the advanced computing machinery on which it will be run.
These are points that we can expect to be more pronounced in
exascale environments that cost hundreds of millions of euros to
build.

Fourteen years after a review of possibilities for exascale com-
puting in ABSS [5], exascale computing officially arrived. Exascale
computers are about a billion times faster than a personal computer,
and a thousand to a million times faster than a university’s comput-
ing cluster. ABSS became particularly prominent during the Covid
crisis [e.g. 3, 10], but work was still hampered by constraints on
computing resources. Exascale computing power is such that the
computation could be reduced to seconds in future crises.

We report here on envisioning how exascale could transform
ABSS use, for which we have held the first of a series of group
model-building exercises. As well as use cases, the exercise elicited
exascale ABSS capabilities, capacity requirements and threats.

2 METHOD
The group model building took place within a two-hour workshop
hosted at an international conference in 2023. The method centred
on co-constructing a raw causal loop model (CLM), - a directed
cyclic graph [12]. This group model building methodology was
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Table 1: The top two nodes of each type in terms of different degree metrics. Degree indicates the total number of edges a node
has (a proxy for overall importance), divided into out degree (a proxy for its influence on other nodes) and in degree (a proxy
for other nodes’ influence on it).

Node Node Type Out Degree In Degree Degree

Running simulations faster Exascale capability 9 5 14
(Faster) identification of the best ways of doing something Exascale capability 3 2 5
Realtime error correction and visualization of testing Use case 1 4 5
General emulator of simulations Use case 3 1 4
Writing higher level code for ABSS Capacity required 3 2 5
AI data mining Capacity required 4 1 5
Risk that gatekeepers over-protect access to exascale computing Threat 2 1 3
Over-complication of models Threat 2 1 3

chosen in favour of alternatives for various reasons. First, it repre-
sents the diverse perspectives of the participants while allowing
them to direct the development of knowledge represented by the
model. Second, as a contrived method [7], it permits the elicitation
of tacit as well as explicit knowledge. Third, as a systems approach,
it provides an integrated view of interconnections among elements
of participants’ visions. Fourth, it provides a formal representation
amenable to network analysis and qualitative reasoning.

The raw CLM was co-constructed using VUE software [11] pro-
jected on two large screens always visible to the participants. The
procedure used was similar to the approaches described in [4, 12],
but reversed the order of the cause and consequence steps:

1. Individually, participants thought about and then wrote down
what frustrated them about ABSS development and use, and how
they thought exascale computing might provide something better.
In plenum, the Knowledge Engineer (KE) drew their answers as
‘start’ nodes in the CLM, encoded as ‘exascale capabilities’.

2. For each start node, the KE asked participants, “What does this
node bring us in terms of ABSS development and use?” The KE then
created new nodes for each answer, linking them to the start node
via edges, and encoding the new nodes as ‘exascale capabilities’ or
‘use cases’ as appropriate.

3. For each new node, the KE asked participants, “What capacities
do you require to realize the improvement represented by this node?”
Further nodes were created, linked by new edges to the appropriate
node and encoded as ‘capacities’.

4. The KE asked participants to identify potential threats from
exascale ABSS, encoding answers as ‘threat’ nodes linked to other
nodes in the CLM as appropriate.

After the workshop, the raw CLM was then cleaned up and
refined by the KE (e.g. to ensure nodes had been correctly cate-
gorised) to create the final CLM, in a process supported by ‘blind
judge’ verification [e.g. 6].

3 RESULTS AND DISCUSSION
The final CLM, integrating the different participants’ visions on
the potential of exascale ABSS, was composed of 58 nodes and 63
edges. The results of applying network centrality metrics of degree,
out-degree, and in-degree to the final CLM can be seen in Table 1.
This metric is useful in reflecting important nodes identified by the
participants that greatly influenced, and/or were greatly influenced

by, causal chains in the CLM. By far the most important node was
the capability to run simulations much faster. Next important in
terms of influencing other causal chains i.e. out-degree, was the
capacity required for AI data mining in order to improve the ex-
plainability of complex exascale ABSS and to support development
of higher level coding blocks, e.g., for controlling parallel processing
in exascale ABSS.

Being able to run simulations faster provides the capability to
carry out more model refinement iterations. The CLM showed how
this could lead to faster identification of the best ways of doing
something and thus to new use cases such as using exascale ABSS
to identify the the best formalization of a given social theory - a
current challenge for ABSS [8].

The exercise was successful in eliciting other new use cases e.g.,
the development of generative simulation emulators/meta-models
trained on billions of simulation runs. Interestingly, faster debug-
ging and visualization of results of testing was also raised as a use
case - something exascale computing ‘gatekeepers’ would expect
to have been done before running a model on such an expensive
machine.

Finally, the CLM highlighted threats resulting from exascale
ABSS development. In addition to increased energy consumption
and the potential end of ‘normal’, giga-scale ABSS, it identified
threats such as the encouragement of spuriously over-complicated
models and inequitable access to exascale resources due to overpro-
tective gatekeeping.

Further workshops will follow up this work to identify practical
pathways for taking ABSS to the next level in terms of achieving
the desirable visions identified, and mitigating key threats. Such
identification will be important since some participants warned
against over-optimism, questioning whether exascale computing
might lose out to another technological paradigm shift (e.g. quan-
tum computing) before it can mature. Also, the following challenge
was posed: is sheer computing power really the main bottleneck to
taking ABSS up to the next level?
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ETHICS STATEMENT
The final causal loop model (CLM) captured two areas leading to
ethical concerns.

i) Developing the capacity to produce workable institutional
regulations to ensure equitable access to exascale resources will be
very important. Without this, as mentioned in [9], the result could
be reduced access for social scientists who, for example, would not
necessarily, by training, have the technical capacity to provide tech-
nical use-justifications. As mentioned in the workshop, inequitable
access might also particularly affect those not from the ‘Global
North’.

ii) The CLM also revealed concerns as to who will end up using
exascale ABSS and for what purposes. Using exascale to develop
fine-grained ABSS working at large population or geographical
scales will require both large amounts of input data and increased
capacities in terms of AI-based machine learning tools to under-
stand the resulting models. The concern was that both the scale
of complexity of exascale ABSS and the use of AI to explain such
models may concentrate ABSS ownership in larger, more powerful
actors who may use it for purposes that might not be transparent.

Both areas of ethical concern would benefit from increased ca-
pacities for the monitoring of such possible trends as exascale ABSS
is operationalized over time.
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