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ABSTRACT
In Reinforcement Learning, deep neural networks play a crucial
role, especially in Multi-Agent Systems. Owing to information from
multiple sources, the challenge lies in handling input permutations
efficiently, causing sample inefficiency and delayed convergence.
Traditional approaches treat each permutation source as individual
nodes for inference. Our novel approach integrates an attention
mechanism, allowing us to capture temporal dependencies and
contextually align inputs. The attention mechanism enhances the
alignment process, allowing for improved information processing.
Empirical evaluations on SMAC environments demonstrate supe-
rior performance compared to baselines, achieving a higher win
rate on 68% of test evaluations.
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1 INTRODUCTION
Reinforcement Learning, a cornerstone in controlling single-agent
[1, 18, 21] and Multi-Agent Systems (MAS) [4, 10], faces new chal-
lenges in the expanding realm of Multi-Agent Reinforcement Learn-
ing (MARL). Notably, the issues of Permutation Invariance (PI) and
Permutation Equivariance (PE) emerge as critical challenges. In
MARL, agents perceive state information as unordered sets [15],
posing a challenge for traditional Deep Neural Networks (DNNs)
unequipped to handle such structures with permutations [27].

In a multi-agent setting; each agent, 𝑎𝑖 , selects actions (𝑢𝑖 ∈ U)
from a local policy (𝜋𝑖 : Ω → U), derived from its local observation
(𝑜𝑖 ∈ Ω) of the environment. Traditionally, spatial information is
represented as sets without specific order, challenging traditional
DNNs. Our objective is to learn policies 𝜋𝑖 for actions 𝑢𝑖 given
set-formatted observations 𝑜𝑖 , encapsulating permutations.
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Consider a system with three agents 𝑎1, 𝑎2, and 𝑎3, each perceiv-
ing its own and others’ states, introducing potential permutations.
For instance, agent 𝑎1 with local observation 𝑜1 = {𝑜1,1, 𝑜1,2, 𝑜1,3},
where 𝑜𝑖, 𝑗 is agent 𝑎 𝑗 ’s state as seen from 𝑎𝑖 , may exhibit internal
swapping among 𝑜1,𝑖 . The policy 𝜋1 achieves Permutation Invari-
ance if it consistently produces unchanged output [9], and Permu-
tation Equivariance if its output aligns with the input permutation
[12]. Our objective is to learn policies that respect both PI and PE
properties, accommodating observations as sets.

Figure 1: PI and PE policy 𝜋1 for 𝑎1 using local observation
𝑜1 with possible permutations as seen by agent 1.

We have inputs of size 𝑚. Let 𝐺 be the set of all permutation
matrices of sizes𝑚 ×𝑚, and 𝑔 ∈ 𝐺 . A policy 𝜋𝑖 : Ω → U, is PI
if 𝜋𝑖 ( [𝑜𝑖,1, ..., 𝑜𝑖,𝑚]⊤) = 𝜋𝑖 (𝑔 × [𝑜𝑖,1, ..., 𝑜𝑖,𝑚]⊤),∀𝑔 ∈ 𝐺 . A policy
is PE if 𝜋𝑖 (𝑔 × [𝑜𝑖,1, ..., 𝑜𝑖,𝑚]⊤) = 𝑔 × (𝜋𝑖 ( [𝑜𝑖,1, ..., 𝑜𝑖,𝑚]⊤)), where
[𝑜𝑖,1, ..., 𝑜𝑖,𝑚]⊤ ∈ Ω [24]. A similar example is shown in Fig. 1 (𝜋𝑖 is
explained later). The permutation possibilities shows exponential
growth to increasing number of agents.

Existing approaches [5, 9, 22, 26], use Graph Nets [3] and Trans-
formers [16], address permutation challenges, but often fail to treat
inputs as independent sources before output summarization [25].
We propose an novel methodology that leverages the attention
mechanism to effectively capture permutation patterns and align
state information in MAS. Our contributions include the following.

(1) A methodology incorporating the attention mechanism, en-
hancing the model’s capability to handle permutations in
multi-agent systems by capturing permutation patterns.

(2) An approach to address disruptions in the auto-regressive
input sequence caused by frequent permutations, ensuring
a more practical algorithm for handling inconsistencies.

(3) Empirical evaluations on StarCraft [13] and GRF [6] envi-
ronments demonstrating improved sample efficiency and
convergence compared to existing methods.

1.1 Related Work
We build upon VDN [14] as our foundational algorithm for solving
the Dec-POMDP problem [11]. Contemporary approaches to PI/PE
such as data augmentation [23] encounters scalability issues as
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generating all possible permutations is infeasible in a continuous
input space. In MAS, the dynamic and stochastic nature of the en-
vironment necessitates parsing and modeling the hidden semantics
of the environment as perceived by local agents. Works such as
[5, 8, 9, 19, 20] employ shared embedding layers to capture state
semantics, albeit with limitations in representation capability [17].
To address this, recent works utilize hyper-networks [2] and self-
attention from Transformers [7, 22, 26] to predict separate weights
for each semantic component, enhancing representational capa-
bility. Utilizing the Markov property of the system further aids in
interpolation and weight prediction for hyper-networks.

2 METHODOLOGY
The input to 𝜋𝑖 are the local observations, 𝑜𝑖 . Each 𝑜𝑖 is composed of
state information from other active agents, as perceived by agent 𝑖 ,
𝑜−𝑖 , concatenated with its own information 𝑜+𝑖 , i.e., 𝑜𝑖 = [𝑜+𝑖 , 𝑜−𝑖 ].
In Figure 1, 𝑜−𝑖 = {𝑜1,2, 𝑜1,3}. By minimal modification [2], if the
input layer which accepts 𝑜−𝑖 is PI, we get a PI policy. Similarly,
if the output layer providing 𝑢−𝑖 is PE, we get a PE policy. So we
changed only the input layer processing 𝑜−𝑖 and the output layer
for𝑢−𝑖 as shown in Figure 1. The remaining layers were kept similar
to those used in a DNN policy.

Figure 2: Overallmethodology to de-
sign the PI/PE policy.

The weights of
each layer in a neural
network are stored
in a matrix, where
the row dimension
corresponds to the
input vector and the
column dimension cor-
responds to the out-
put vector. In order
to maintain consis-
tency in the input to the deeper layers for PI, it is desired that
over time the input to the neural network remains in the same form
as it was at 𝑡 = 0, 𝑜0

𝑖
. To keep 𝑢𝑡

𝑖
consistent with the order of 𝑜𝑡

𝑖
in

PE, it is necessary to realign the weights of the output layer with
𝑜𝑡
𝑖
. Our approach can be summarized by the following points.
• For PI, our objective is to maintain the local observation 𝑜𝑡−𝑖
in the same arrangement as it was at the initial time-step
𝑜0−𝑖 . For this we use the Attention module [16], but do not
self-attend. We use the order of 𝑜0−𝑖 , as 𝑄 to reorder each
𝑜𝑡
𝑖, 𝑗
; 𝑗 ≠ 𝑖 , used as 𝐾 and 𝑉 ; through attention.

• For PE, we rearrange each row weights based on the outputs,
𝑢−𝑖 , according to each 𝑜𝑖, 𝑗 ; 𝑗 ≠ 𝑖 . Here 𝑜𝑡−𝑖 ≡ 𝑄 and each row
𝑤𝑘 from weight matrix serves as both 𝐾,𝑉 (Equation 1).

𝑤 ′
𝑘
= softmax(

𝑜𝑡−𝑖𝑤
⊤
𝑘√︁

𝑑𝑖𝑚(𝑤𝑘 )
)𝑤𝑘 (1)

For longer trajectories (𝑡 >> 0), 𝑜0
𝑖
is not a good estimation

for PI. To mitigate the problem, we use the PE strategy to aid
invariance. Here, instead of reordering each row of the weight
matrix, we reorder each column of our weight matrix. In summary,
we can say that, if the columns of the weight matrix are permuted
according to the given input vector, we achieve PI; but if the rows are
permuted according to the input vector, we achieve PE. The complete
methodology is outlined in Figure 2.

3 EXPERIMENTAL RESULTS
Our approach was evaluated on StarCraft [13] and Google Research
Football [6] benchmarks. As baselines we used PIC [9], HPN [2], SET
[26], DS [8], MEM [22], and ASN [19]. In the results, our approaches
are: • Permutation Agnostic System (PAS), where we used 𝑜0

𝑖
as the

approximation for PI • Permutation Equivariant System (PES), where
we used the equivariance approach for PI and PE.

Both the benchmark environments can be modelled as Dec-
POMDP [11]; consist of cooperating and competing agents; we
control the cooperative agents. The observation space is continu-
ous, where 𝑜𝑖 consists of state information from all other agents in
the environment (𝑜−𝑖 ) apart from 𝑜+𝑖 . The action space is discrete
for both; where some actions may be directed towards an ally or
enemy agent (PE) depending on the environment specifications.

Figure 3: Evaluation results on StarCraft and GRF.

Figure 4: Comparison of average %
of episodes where win rate≥ 𝜏 .

As shown in the
results in Figure 3,
our PES approach
out-performs the base-
lines for most sce-
narios. The PAS ap-
proach did not give
equally good results
owing to state-estimation
errors. The summary
of the evaluations is
shown in Figure 4,
where we present the percentage of evaluations where the mean
win rate was ≥ 0.6, ≥ 0.8, and ≥ 0.9 on StarCraft scenarios.

4 CONCLUSION
In this work, we proposed a novel approach to efficiently address
invariance and equivariance problems by using the attention mech-
anism. Our method integrates PI and PE layers into conventional
policy networks, overcoming permutation challenges and improves
decision accuracy. Its efficacy was empirically evaluated on bench-
mark environments, where it outperformed existing methods and
indicated promise for enhanced multi-agent system performance
via efficient training and convergence. Looking forward, our work
sets the stage for leveraging attention mechanisms in MARL for
more complex challenges, and further exploration is needed for
its applicability in diverse scenarios, promising advancements in
MARL research.
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