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ABSTRACT
Policy-guided offline reinforcement learning (POR) decomposes the
offline reinforcement learning (offline RL) problem into goal esti-
mation and goal-conditioned execution subproblems, leading to im-
proved performance. However, we reveal that the preciseness of the
estimated goal massively affects the performance and robustness of
the trained goal-conditioned policy. To overcome this problem, we
propose an offline RL model with dual guide-policies to improve
the preciseness of the goal and reduce the variance. The proposed
dual-policy-guided offline RL (Dual POR) adopts an integrating
function, which balances the goals predicted by two guide-policies
to obtain a refined goal. Moreover, we employ the optimal stop-
ping strategy to schedule the training process, which dramatically
shortens the training process and improves the generalization. The
proposed Dual POR achieves state-of-the-art performance on the
D4RL datasets with reduced variances. The improvements in high-
complexity tasks are even significant, which indicates the potential
of the proposed Dual POR in real-world applications.
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1 INTRODUCTION
Goal-conditioning methods reduce the complicated optimization
problem into goal-conditioned subproblems [4, 7, 10]. The recent
policy-guided method [9] incorporates the goal-conditioning in-
sight into Offline RL by simultaneously learning a guide-policy to
offer a goal (target state) for the goal-conditioned execute-policy.
Compared to the previousworks, the policy-guidedmethod achieves
remarkable improvement with a simple imitation learning strat-
egy over the classical locomotion problem, i.e., AntMaze. However,
previous offline RL approaches employ a single policy to decide
actions. Therefore, the performance massively depends on this pol-
icy network, resulting in diminished robustness and inadequate
interpretability. The limited dataset (i.e., trajectories from expert
policy) used for offline RL makes the problem even more severe.

This paper proposes a dual-policy-guided offline RL (Dual POR)
model to improve the goal estimation accuracy and reduce the
variance. We introduce an integrating function to generate the
integrated goal regarding the two goals from the guide-policies.
Furthermore, we employ an optimal stopping approach to refine the
execute-policy and avoid over-fitting on the limited offline dataset.
Experimental results show that the proposed Dual POR model
archives the state-of-the-art performance on the popular offline
RL dataset (i.e., the D4RL dataset [3]) with improved performance
and reduced variance. In summary, the contributions of this paper
are listed below: i) We propose a dual-policy-guided offline RL
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Figure 1: Framework of the proposed dual-policy-guided of-
fline RL (Dual POR) model.

(Dual POR) model, which offers refined goals for goal-conditioned
execute-policy. ii) We introduce an integrating function and the
optimal stopping algorithm into the Dual POR model for enhanced
generalization. iii) The proposed method achieves state-of-the-art
performance on the offline RL dataset with improved robustness.

2 METHODS
Figure 1 depicts the proposed dual-policy-guided offline RL. We
achieve the offline RL with dual goal-estimation guide-policies and
a goal-conditioned execute-policy. Specifically, two goals whose
names are Goal A and Goal B are derived from the dual guide-
policies. Both goals are then fed to the integrating function to
generate the refined goal. The refined goal and the original state are
taken into the execute-policy to generate the action. The (target)
value network estimates the state value based on the reward. It
works as the weight of the training target of the dual guide-policies
and the execute-policy, and as flexible weights of the integrating
function to balance the two estimated goals.

Dual guide-policies. The role of guide-policies is to estimate
the goal based on the current state. The corresponding mapping is
𝑔𝜔 : 𝑠 → 𝑠 ′ as we take the next state as the goal. Based on AWR [8],
superior results can be achieved by computing the Bellman residual
for the value functions of the current state and the next state and
utilizing the resulting values as advantage weight for the guide-
policy. Then, the optimization objective for the guide-policy can be
formulated as Eq. (1).

𝐽 (𝜔𝑖 ) = max
𝜔𝑖

E(𝑠,𝑠′)

[
𝑒

(
𝑟+𝛾𝑉𝜙′ (𝑠′)−𝑉𝜙 (𝑠)

)
log𝑝

(
𝑠 ′ |𝑔𝜔𝑖

(𝑠)
) ]
, (1)

where 𝑔𝜔𝑖
(𝑠) with 𝑖 ∈ {𝐴, 𝐵} are two guide-policies and 𝜔𝑖 are

their leanable parameters. Here, we denote the two estimated goals
from the guide-policies as 𝑠 ′

𝐴
and 𝑠 ′

𝐵
. Two guide-policies are trained

separately with different initialization. They offer two independent
goal estimates from two diverse fitted models, which provide more
sufficient information than a single guide-policy.

Integrating function. We assign weights to balance these two
goals when integrating them to obtain the high-precision refined
goal. The goal with a higher value is assigned a weight of [ ([ ∈
[0, 1]), while the weight (1 − [) is allocated to the other goal. The
integrating function is formulated as Eq. (2).

𝑠 ′ref = [ · argmax
𝑠′
𝑖
∈{𝑠′

𝐴
,𝑠′
𝐵
}
𝑉 (𝑠 ′𝑖 ) + (1 − [) · argmin

𝑠′
𝑖
∈{𝑠′

𝐴
,𝑠′
𝐵
}
𝑉 (𝑠 ′𝑖 ) (2)

Optimal stopping. The model further adopts the optimal stop-
ping strategy to prevent overfitting and reduce training time. Gen-
eral offline reinforcement learning task requires a series of evalua-
tions during the model training. A well-trained policy should stop
training to avoid overfitting, preventing performance degradation.
The secretary problem of the optimal stopping theory concludes
that the well-trained policy should measure 𝑇 /𝑒 rounds and ter-
minate once the rest one evaluation score exceeds the maximum
score in measurement period. Here 𝑇 is the total evaluation round,
and 𝑒 is the natural logarithm.

3 EXPERIMENTS
The proposed Dual POR is compared with latest arts including
CQL [6], RvS [2], IQL [5] and POR [9]. The benchmark dataset is
D4RL [3] which follows the settings of prior arts above. The score
is formluated as the D4RL normalized score ranging from 0 to 100,
with 100 as expert performance and 0 as ramdom performance.

Table 1: Comparison of Dual POR and other baseline meth-
ods on AntMaze datasets.

D4RL Dataset CQL RvS IQL POR Dual POR

antmaze-u 74.0 65.4 87.5 90.6±7.1 94.8±3.5
antmaze-u-d 84.0 60.9 66.2 71.3±12.1 83.6±3.7
antmaze-m-p 61.2 58.1 71.2 84.6±5.6 94.0±2.5
antmaze-m-d 53.7 67.3 70.0 79.2±3.1 90.4±4.6
antmaze-l-p 15.8 32.4 39.6 58.0±12.4 76.8±3.7
antmaze-l-d 14.9 36.9 47.5 73.4±8.5 73.6±10.0
AntMaze mean 36.4 53.5 63.6 76.2±8.1 85.5±4.7

Table 1 shows the performance on the average score and the
variance of each D4RL AntMaze dataset. The proposed Dual POR
achieves state-of-the-art performance on the D4RL datasets with
reduced variances. We also conduct the comparison experiment on
Gym-MuJoCo [1], including Halfcheetah, Hopper, and Walker2D
datasets. Dual POR achieves an average score of 84.4, exceeding
the prior art of an average score of 81.8. Moreover, the optimal
stopping strategy reduces the training epoch by 33.6% and 27.7%
for AntMaze and Gym-MuJoCo tasks, respectively.

4 CONCLUSIONS
This paper presents a dual-policy-guided offline reinforcement
learning model utilizing dual guide-policies. We incorporate the
value function into policy generation, which enriches the informa-
tion available for policy generation within this evaluation paradigm.
We apply the optimal stopping strategy tomodel evaluation, helping
us capture optimal policy quickly. This work shows the improve-
ment of employing more accurate goals in goal-conditioning offline
RL methods. More theoretical explorations are expected to gain
further improvement.
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