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ABSTRACT
In many specific tasks, training models with Multi-Agent Reinforce-
ment Learning (MARL) to solve a task often leads to overfitting to
the training environment. When dealing with multi-task, models
specialized for a single task often fail to generalize, and retraining
models often implies the consumption of computational resources.
Therefore, it is necessary to establish a pre-trained model that can
be quickly deployed in an online environment. Therefore, we pro-
pose temporal information multi-agent transformer (TIMAT) based
on the transformer that extracts temporal information and models
MARL as Sequence Models (SM). The advantage of this framework
is that it can handle time information of arbitrary length and any
number of agents regardless of the type, which greatly enhances
the generalization ability of the model.
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1 INTRODUCTION
MARL methods have demonstrated excellent performance in single
tasks within simulated environment s[4, 6, 11]. However, bridging
the gap between these methods and real-world applications still
poses significant challenges. The lack of sufficient generalization
ability in models when faced with variations in observations, states,
and the number of agents across different tasks often necessitates
retraining the model to adapt to new tasks [3, 5, 9].
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2 METHOD
The TIMAT framework is built using a transformer based on self-
attention mechanisms [8]. As shown in the Figure 1, We combine
the research results of sequence models with Multi-Agent Advan-
tage Decomposition theorem [10], using Obs Encoder and Action
Decoder as the universal parts of TIMAT to map the agent’s obser-
vations into a sequence output of the agent’s actions. Under such a
framework, TIMAT can adapt to different observations inputs and
different numbers of agents in various tasks, and it utilizes historical
information, enhancing the model’s generalization performance.

TIMAT consists of two parts: 1) offline TIMAT, and 2) online
TIMAT. Compared to offline TIMAT, online TIMAT incorporates
Critic Block and combines the global state 𝑠 as an additional input
with the output from Obs Encoder. This benefits us in quickly adapt-
ing to online tasks and more accurately evaluating state functions
using MARL algorithms.

Obs block demonstrated in Figure 2 takes an observation se-
quence 𝑜𝑖𝑚𝑡−𝑐 :𝑡 of arbitrary length 𝑐 as input and uses self-attention
mechanisms to represent the relevance of observations at different
moments by computing the weight matrix softmax

(
𝑄𝐾𝑇 /

√
𝐷

)
[8]. When this matrix is multiplied with 𝑉 , it yields the weighted
values for each observation moment. There’s no need to compute
values beyond the current moment, so only the last dimension of
the output is extracted to gather past historical information.

During the offline training phase, offline TIMAT can only access
information from the past 𝑐 steps, and uses the cross-entropy loss
function to map the observation sequence

{
𝑜
𝑖1:𝑛
1 , · · ·𝑜𝑖1:𝑛𝑡

}
, onto the

actions 𝐴 stored in dataset.
During the online training phase, the refined offline TIMMAT

will be deployed as the pre-trained model to the online TIMAT.
We use HAPPO based on the Actor-Critic method to train the
online TIMAT because it, along with TIMAT, both employs multi-
agent advantage decomposition theorem, ensuring the algorithm’s
monotonic improvement property when agents execute actions in
a certain order [1, 2]. Each agent 𝑚 first processes its own his-
torical information 𝑜𝑖𝑚𝑡−𝑐 :𝑡 through Obs Block. Under the effect
of masked attention, Action Decoder uses the mixed observation{
𝑜
𝑖1
𝑡 , · · · , 𝑜

𝑖𝑛
𝑡

}
as queries to compute the relevance with the input
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Figure 1: The architecture of TIMAT, taking observations of length 𝑐 as input to obtain autoregressive output actions.

Figure 2: Observation Block:The processing procedure of
observations for the agent𝑚.

actions
{
𝑎
𝑖1
𝑡 , · · · , 𝑎

𝑖𝑚−1
𝑡

}
and the agent𝑚 can only consider the ac-

tions of the previous𝑚 − 1 agents when auto-regressively output
the action 𝑎𝑖𝑚𝑡 .

3 EXPERIMENTS
We focus on StarCraft Multi-Agent Challenge (SMAC) [7], a widely-
used experimental environment in MARL that encompasses various
types of tasks and constructs an offline dataset used in this envi-
ronment from a well-trained MARL algorithm.

The experimental results show that the offline TIMAT framework
demonstrates excellent generalization capabilities even when it is
only used to model a handful of simple tasks. It exhibits a strong
ability to generalize to unseen and challenging tasks, indicating
that the model has improved the usage efficiency of offline datasets,
which will accelerate the speed of online training.

Online TIMAT was compared with TIMAT without deploying
a pre-trained model (no deploy) and two baseline methods (MAT
and MAPPO). As shown in Figure 3, after a limited number of
training steps, online TIMAT demonstrated a faster convergence
rate and achieved a higher win rate across various task difficulties.
Furthermore, we also observed that TIMAT, without pre-training,

Task Reward

Easy

3m 15.2353 (±1.4925)
8m 17.2078 (◦) (±1.0413)
2s3z 12.7336 (±1.3182)
MMM 18.5335 (◦) (±1.4665)

Hard
1c3s5z 11.3699 (±1.2569)

10m vs 11m 10.0287 (±0.7369)
3s5z 18.8785 (◦) (±1.1215)

Super Hard MMM2 6.1066 (±1.3908)
6h vs 8z 8.2465 (±0.8413)

3s5z vs 3s6z 10.5110 (±0.4728)
Table 1: Offline: The average reward corresponding to the
model, with a maximum reward of 20. The symbol ◦ repre-
sents the source task.

Figure 3: Performance comparisons on 5m vs 6m in SMAC.

outperformed other baseline algorithms in many tasks. This in-
dicates that TIMAT possesses an efficient capability for temporal
information processing.
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