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ABSTRACT
We introduce a computational version of the generalized quasi-

variational inequality problem and study its computational com-

plexity, in particular proving that it is PPAD-complete. We also

consider applications to multi-leader-follower games, a domain

traditionally marked by the absence of general solutions. How-

ever, through the use of relaxation techniques, we obtain versions

of these problems which may be formulated in terms of quasi-

variational inequalities, allowing us to obtain PPAD-completeness

for such games.
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1 INTRODUCTION
Quasi-variational Inequalities (QVI) are a class of mathematical

problems that are a generalization of variational inequalities. Vari-

ational inequalities and quasi-variational inequalities are used in

optimization theory, economics, engineering, and various other

fields to model and solve a wide range of real-world problems,

particularly those involving equilibrium or optimization under con-

straints [20, 22, 32, 35]. In a standard variational inequality, the goal

is to find a vector that belongs to a given fixed set. QVI generalizes

this concept by introducing a set-valued mapping that makes the

feasible set dependent on the variables. These both arise in various

fields such as optimization, equilibrium problems, and economics,

where one seeks to find a solution that satisfies a certain inequality

condition involving a set of functions or operators. For example, un-

der some basic assumptions such as differentiability, Debreu-Rosen

style games (see [12, 38, 41]) can be expressed as QVIs, aiding
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their analysis through variational techniques, and offering a unified

framework for diverse multiplayer, non-cooperative games [35].

Solving a QVI is typically more challenging than solving a VI

due to the increased generality. Beginning with the formal defini-

tion proposed by Bensoussan and Lion ([3–6]), researchers have

undertaken an analysis of algorithmic solutions, in particular condi-

tions governing convergence. Various numerical and mathematical

techniques, such as fixed-point methods, penalty methods, and

projection methods, can be employed to find solutions to QVIs

[2, 15, 20, 35, 39, 40]. In many cases, QVIs can be challenging to

solve directly. Researchers often use regularization techniques or

approximate the problem to make it more amenable to numerical

methods. These techniques may find an approximate solution that

is within a specified tolerance of the true solution. In this case,

complexity depends on the chosen approximation accuracy and the

convergence rate of the algorithm. The study of the computational

aspects of quasi-variational inequalities is in its early stages of de-

velopment. Specifically, the majority of research papers focus on

examiningwhether a solution to a problem exists [7, 8, 28, 31, 36, 47].

The generalized quasi-variational inequality problem (GQVI) is an

extension of QVI and the generalized variational inequality (GVI)

studied in [16].

Definition 1.1. Given a correspondence (also called a set-valued
map or a a point-to-set map) F from R𝑚 into subsets of R𝑚 and a

correspondence R from R𝑚 into subsets of R𝑚 , an 𝜖-approximate

solution the GQVI (R, F ) tries to find two vectors 𝑥∗ ∈ R(𝑥∗) and
𝑤∗ ∈ F (𝑥∗) such that:(

𝑦 − 𝑥∗
)𝑇

𝑤∗ + 𝜖 ≥ 0, ∀𝑦 ∈ R
(
𝑥∗

)
Remark. In the QVI case, we assume that F is a function. In the VI

case, we also assume that R(𝑥) = R for all 𝑥 . In [8], an existence

result for the GQVI was proved using the Eilenberg-Montgomery

fixed point theorem (see [14]).

Problems for which Kakutani’s fixed-point theorem can estab-

lish existence results, particularly those involving the games intro-

duced by Debreu and Rosen as well as quasi-variational inequalities,

have not been thoroughly explored from an algorithmic perspec-

tive. In [37], a problem called Kakutani was introduced, and a

sketch of its inclusion in the complexity class PPAD was given. The

main challenge in developing a general formulation of Kakutani

as a computational problem is that conventional approaches for

explicitly and succinctly representing a convex set, such as the

convex hull of a point set or a convex polytope defined by linear

inequalities, are excessively restrictive and fail to capture key prac-

tical applications of Kakutani’s theorem, such as the application to

games mentioned above. Recently a more suitable computational
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formulation of the Kakutani problem was introduced by leveraging

computational convex geometry (see [21]) and was used to settle

the computational complexity of finding approximate equilibrium

solutions for Debreu-Rosen style games [38]. In this approach, com-

putational problems for Kakutani’s theorem and Debreu-Rosen

style games are defined using linear arithmetic circuits to represent

weak/strong separation oracles for convex-valued correspondences

(and also convex sets) to assure consistency between their values

and their gradients in order to prevent some computational chal-

lenges. Informally, strong (weak) separation oracles can verify the

membership (almost membership) of a point in a correspondence

(set). Linear arithmetic circuits can efficiently approximate any poly-

nomially computable function; in particular, they can approximate

polynomials. They also have a variety of useful properties such as

Lipchitzness (for more information see [17] and [38]).

Multi-leader-follower games are a class of games in which multi-

ple agents, referred to as leaders and followers, interact strategically
to achieve their respective objectives. Leaders and followers often

have conflicting objectives or interests, in particular aiming to max-

imize their own benefits or minimize their costs. The concept of

multi-leader-follower games has a variety of applications that arise

from situations where there are multiple oligopoly firms operating

in the market [10, 24, 25, 29, 35]. Oligopoly markets are markets

dominated by a small number of suppliers. The simplest form of

the multi-leader-follower game is a Stackelberg game [1, 42, 46]

in which one leader and multiple followers react to the leader’s

strategies. These games find applications in various fields, includ-

ing economics, engineering, and multi-agent systems [11, 23, 34].

Traditional game theory provides solution concepts for analyzing

and solving multi-leader follower games. The multi-leader-follower

(𝐿/𝐹 )-(Nash) equilibrium is a solution concept for multi-leader-

follower games and can be described as a collection of strategies

employed by leaders and followers. In this equilibrium, no individ-

ual player, whether a leader or a follower, can improve their utility

(or minimize their loss or regret functions) by unilaterally altering

their current strategy. Stackelberg games can be seen as a specific

instance of mathematical programs with equilibrium constraints

(MPEC) (where there is only one leader). In this case, the followers’

problems are replaced by a constraint given by their optimality con-

ditions. In a broader context, an MPEC is an optimization problem

that encompasses two sets of variables, namely decision variables

and response variables[18, 30, 33]. A mathematical framework com-

monly used to represent the multi-leader-follower game is referred

to as the equilibrium problem with equilibrium constraints (EPEC).

An EPEC [13, 19, 26, 27, 43, 44] is essentially an equilibrium problem

composed of multiple parametric MPECs, each of which incorpo-

rates other players’ strategies as parameters. Achieving equilibria in

an EPEC involves solving all the embedded MPECs simultaneously.

Although the multi-leader-follower problem offers a sound math-

ematical framework with a clearly defined solution concept and ap-

plications, its elevated level of complexity and technical intricacies

render it computationally intractable. Specifically, they resemble an

equilibrium problem in a more complex form of Debreu-Rosen style

games, requiring each leader to solve a non-convex mathematical

program with equilibrium constraints [35, 45]. This formulation

faces two significant issues: a potential absence of an equilibrium

solution due to non-convexity, and computational intractability. To

address these challenges, a careful analysis and choice of remedial
models that lead to a sensible equilibrium solution were presented

in [35]. Another possible approach comes from considering a class

of multi-leader-follower games [25] that satisfy some particular,

but still reasonable assumptions and can be formulated in terms of

variational inequalities.

2 OUR CONTRIBUTION
The fundamental results of the work primarily focus on the com-

putational complexity of finding approximate solutions to differ-

ent variants of variational inequalities, namely generalized quasi-

variational inequalities, quasi-variational inequalities, and varia-

tional inequalities. We demonstrate that a general formulation of

all of these result in problems that are PPAD-complete
1
.

Theorem 2.1 (informal). Finding an approximate solution to
computational variants of GQVI, QVI, VI are PPAD-complete where:

• The correspondences are convex-valued and given by linear
arithmetic circuits which represent either a strong or weak
separation oracle.

• The functions are represented by linear arithmetic circuits.
• The sets are convex and given by linear arithmetic circuits
which represent either a strong or weak separation oracle.

Proof sketch. We combine the techniques of [8, 38] to show

the inclusion of the GQVI problem in PPAD, leveraging the compu-

tational version of Kakutani’s fixed point theorem and the robust

version of Berge’s maximum theorem [38]. PPAD-hardness of this

problem can be shown by converting a game in which finding an

approximate equilibrium is hard to the QVI format[35, 38]. □

Building upon the remedial model that was introduced in [35]

for multi-leader-follower games, we formulate a computational

version of finding remedial equilibrium solutions in multi-leader-

follower games. By using the machinery that was provided by the

computational version of quasi-variational inequality, we prove the

PPAD-completeness of the aforementioned computational problem.

Theorem 2.2 (informal). Finding an approximate solution to
remedial solution of [35] to an L/F equilibrium in a multi-leader
follower game is PPAD-complete given the conditions of Theorem 5 of
[35] and:

• The correspondences are convex-valued given by linear arith-
metic circuits that represent a strong or weak separation oracle.

• The functions are represented by linear arithmetic circuits.
• The sets are convex given by linear arithmetic circuits which
represent either a strong or weak separation oracle.

Proof sketch. We show that this problem can be converted to

a QVI problem in polynomial time. PPAD-hardness of this problem

is implied by the hardness of finding a mixed Nash equilibrium

(see [9]) in a game with 2 leaders where the utilities represent the

expected payoff of mixed strategies and the followers have only

one strategy and no restrictions.

□
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