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ABSTRACT

Our research addresses the challenging multi-agent safe control

problem where agents must reach their goals while avoiding colli-

sions. Avoidance constraints are enforced within a limited sensing

field, adding practical relevance to the problem. We propose a novel

approach based on tractable Control Lyapunov Function (CLF)-

based Quadratic Programs (QPs) for individual agents, enabling

goal tracking while considering the dynamics of the obstacles in

their limited sensing range. Our framework is highly adaptable,

accommodating a large number of agents and ensuring scalability.

Extensive experiments with differential drive robots illustrate the

computational efficiency and scalability of our approach, even in

highly occluded environments with large number of robots.
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1 INTRODUCTION

CLFs and control barrier functions (CBFs) are used to formulate

control problems as optimization problems, typically modeled as

quadratic programs (QPs) [8]. In the context of a nonlinear system,

CLFs [7] are associated with achieving the objective of stability,

while CBFs [16] are focused on ensuring safety. Primarily designed

for single-agent systems, such methods seem to exploit specific

structure in dynamical systems [4], or do not exhibit scalability [9].

Despite lack of formal guarantees and generalization capabilities,

learning-based methods in autonomous systems have gained signif-

icant attention over the last few years (see [10, 12, 15] for example).

Traditionally, collision avoidance in multi-agent systems has

been tackled by restricting agent velocities, as seen in previous

works such as [1, 13]. These approaches were later extended to
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the design of multi-agent Control Barrier Functions (CBF) when

either perfect knowledge of system dynamics [2] or worst-case

uncertainty bounds were available [14]. However, developing a

decentralized multi-agent CBF controller that can scale to handle

a potentially unlimited number of agents has proven challenging

due to the need for online integration of system dynamics under a

computationally demanding backup strategy, especially in complex

systems, as highlighted in [5].

2 PRELIMINARIES

We consider control affine systems of the form,

¤𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢 (1)

where 𝑥 ∈ X ⊂ R𝑛 and 𝑢 ∈ U ⊂ R𝑚 , 𝑓 (𝑥) : X ↦→ R𝑛 denotes the

drift vector field and 𝑔(𝑥) : X ↦→ R𝑛×𝑚 denotes the control vector

field.

Control Lyapunov Functions (CLFs): A continuously differ-

entiable function ℎ : X ↦→ R is a Control Lyapunov Function [11]

for the system (1) with respect to a set X𝐺 ⊂ X if the following

conditions are satisfied :

ℎ(𝑥) ≤ 0 ∀𝑥 ∈ X𝐺 (2a)

ℎ(𝑥) > 0 ∀𝑥 ∈ X \ X𝐺 , (2b)

∃𝑢 ∈ U 𝑠 .𝑡 . 𝐿𝑓 ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢 ≤ −𝛼ℎ(𝑥) ∀𝑥 ∈ X, (2c)

where 𝛼 : R ↦→ R is an extended class K∞ function, 𝐿𝑣ℎ(𝑥) :=
𝜕ℎ (𝑥 )
𝜕𝑥 · 𝑣 is the Lie derivative of the scalar function ℎ : R𝑛 ↦→ R

along a vector field 𝑣 : R𝑛 ↦→ R𝑛 .

Sequential Convex Programming (SCP) [3] offers an efficient

strategy for tackling optimization problems that lack convexity.

This approach leverages well-established techniques such as Taylor

expansion to iteratively approximate non-convex elements of the

optimization problem. Consequently, it lacks theoretical guaran-

tees regarding convergence to an optimal solution. Nonetheless, as

suggested in [3], SCP frequently demonstrates practical efficacy,

often delivering feasible solutions, if not necessarily optimal ones.

3 METHOD DESCRIPTION

Consider the following CLF-QP:

min

𝑢∈U
| |𝑢 | |2 (3a)

𝑠 .𝑡 . 𝐿𝑓 ℎ(𝑥)+𝐿𝑔ℎ(𝑥)𝑢 ≤ −𝛼ℎ(𝑥) (3b)

This point-wise optimization problem (3) drives the state 𝑥 guides

state 𝑥 to goal set X𝐺 with CLF ℎ(·). Let S = {𝑥1, 𝑥2, . . . , 𝑥𝑁 } be
state vectors for 𝑁 robots with control affine systems like (1), and

G = {X𝐺1,X𝐺2, . . . ,X𝐺𝑁 } their goal sets. Define the propagated
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Figure 1: Safe Multi-Robot Navigation :- Application of MA-CLF-QP to a densely populated and dynamic environment featuring

15 robots. Our approach effectively guides each robot towards its respective goal while avoiding other robots.

state 𝑥 = 𝑥 + [𝑓 (𝑥) + 𝑔(𝑥)𝑢]𝑑𝑡 , i.e. state 𝑥 updated by one discrete

time-step 𝑑𝑡 along its trajectories.

Collision avoidance between 𝑥𝑖 and 𝑥 𝑗 is enforced when they

enter sensing fields, expressed as a lower bound on the Euclidean

distance between their propagated states, i.e. Δ𝑥𝑖 𝑗 := ∥𝑥𝑖 − 𝑥 𝑗 ∥ ≥ 𝑟 ,

where 𝑟 is the minimum avoidance radius. However this explicit

constraint is non-convex. We leverage SCP to sequentially convex-

ify this constraint around previous solutions. For the 𝑖𝑡ℎ robot, at

the 𝑘𝑡ℎ iteration of SCP, the explicit avoidance constraint can be

linearized using Taylor expansion:������Δ𝑥𝑘𝑖 𝑗 ������ = ������Δ𝑥𝑘−1𝑖 𝑗

������ + (
𝜕𝑥𝑘−1

𝑖

𝜕𝑢

)𝑇 Δ𝑥𝑘−1
𝑖 𝑗������Δ𝑥𝑘−1𝑖 𝑗

������
(
𝑢𝑘 − 𝑢𝑘−1

)
(4)

We denote this linearized constraint (4) as 𝑙𝑖𝑛( | |Δ𝑥𝑖 𝑗 | |).
Let S𝑖 =

{
𝑗 ∈ {1, 2, . . . , 𝑖−1, 𝑖+1, . . . , 𝑁 } 𝑠 .𝑡 .

����Δ𝑥𝑖 𝑗 ���� ≤ 𝐹𝑖
}

denote the set of all robot indices that are within the sensing field

(𝐹𝑖 ) of the 𝑖𝑡ℎ robot. The MultiAgent CLF-QP is formulated as the

following point-wise optimization problem:

Definition 1 ( MA-CLF-QP). ∀𝑖 ∈ {1, 2, . . . , 𝑁 } solve :

min

𝑢𝑖 ∈U
| |𝑢𝑖 | |2 (5a)

𝑠 .𝑡 . 𝐿𝑓 ℎ𝑖 (𝑥𝑖 ) + 𝐿𝑔ℎ𝑖 (𝑥𝑖 )𝑢 ≤ −𝛼ℎ𝑖 (𝑥𝑖 ) (5b)

lin
(����Δ𝑥𝑖 𝑗 ����) ≥ 𝑟 ∀𝑗 ∈ S𝑖 (5c)

MA-CLF-QP runs on each robot individually and has access to

the state vectors and their derivatives corresponding to every other

robot in its sensing field.

4 RESULTS & CONCLUSION

We validate Algorithm 1 on differential drive robots governed by

unicycle kinematics:
¤𝑥𝑟
¤𝑦𝑟
¤𝜙𝑟

 =


𝑅
2
cos(𝜙𝑟 ) 0

𝑅
2
sin(𝜙𝑟 ) 0

0
𝑅
𝐿


[
𝑢1
𝑢2

]
where 𝑋𝑟 := [𝑥𝑟 , 𝑦𝑟 ]𝑇 is the center-of-mass (COM) position, 𝜙𝑟 ∈
[−𝜋, 𝜋] is the heading, 𝑅 is the wheel radius, 𝐿 is the track-width of

the robot,𝑢1 and𝑢2 represent the linear and angular velocity control

Algorithm 1 Multi-Agent CLF-QP for the 𝑖𝑡ℎ robot

Require: X𝐺𝑖 , 𝑇 , 𝑑𝑡

1: 𝑀 ← ⌈𝑇 /𝑑𝑡⌉;
2: S𝑖 ← sense(𝑥𝑖 );

3: 𝑢𝑖 ←MA-CLF-QP(X𝐺𝑖 ,S𝑖 ) without (5c);
4: for 2 ≤ 𝑘 ≤ 𝑀 do

5: 𝑥𝑖 ← update_state(𝑢𝑖 );

6: S𝑖 ← sense(𝑥𝑖 );

7: 𝑢𝑖 ←MA-CLF-QP(X𝐺𝑖 ,S𝑖 );
8: end for

inputs. Goal sets are ellipses centered around the goal setpoint, with

corresponding CLFs as the functional form of the ellipse [6]. For

unicycle systems, the CLF must explicitly incorporate the robot’s

heading. This is achieved by parameterizing the CLF with respect to

a point situated at a specified distance (𝑙 ) ahead of the COM along

the robot’s heading.

𝑋𝑝 =

[
𝑥𝑝
𝑦𝑝

]
=

[
𝑥𝑟
𝑦𝑟

]
+

[
𝑙 cos(𝜙𝑟 )
𝑙 sin(𝜙𝑟 )

]
The CLF with respect to 𝑋𝑝 is now given as:

ℎ(𝑋𝑝 ) =
(𝑥𝑝 − 𝑥𝐺 )2

𝑎2
+
(𝑦𝑝 − 𝑦𝐺 )2

𝑏2
− 1

Here𝑋𝐺 = [𝑥𝐺 , 𝑦𝐺 ] is the goal setpoint, 𝑎 and 𝑏 are the semi-major

and semi-minor axes lengths respectively. Simulation results for

15 differential drive robots are presented in Figure 1. Our results

demonstrate successful and safe navigation in highly occluded

environments, with each robot requiring only ∼ 1ms to solve its

QP (5). The results can be extended to accommodate even larger

number of robots.

In this study, we introduce a comprehensive framework for

achieving safe and efficient multi-agent control in complex, dy-

namic environments. Expanding the CLF-QP framework to the

multi-agent context involves integrating SCP, resulting in a com-

putationally efficient solution scalable for any number of agents.

Importantly, this scalability is achieved without explicit knowledge

of other agents’ dynamics, simplifying barrier function design and

avoiding generalization challenges with data-driven methods.
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