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1 INTRODUCTION
A critical capability in the development of complex human-AI col-
laborative systems is the ability of AI agents to understand the
natural language and perform tasks accordingly. However, training
efficient Reinforcement Learning (RL) agents grounded in natural
language has been a long-standing challenge due to the complexity
and ambiguity of the language and sparsity of the rewards, among
other factors. Advances in curriculum learning [1, 9], continual
learning [7], and language models [2, 4, 8], have all independently
contributed to effective training of grounded agents in various en-
vironments. Leveraging these developments, and building upon our
previous work on curriculum learning in teacher-student settings
[6], we present a novel algorithm, Grounded Language Instruc-
tion through DEmonstration in RL (GLIDE-RL) that introduces a
teacher-instructor-student curriculum learning framework. This
three-agent setting lets an RL agent learn to follow natural lan-
guage instructions that can generalize to new tasks and even to
novel language instructions.

2 PROBLEM SETUP AND ALGORITHM
The proposed framework of GLIDE-RL is illustrated in Figure-1.
The final objective is to have a goal conditioned RL agent (Student)
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capable of following the natural language instructions in a sim-
ulated environment with sparse reward. We have three types of
agents: Teacher, Instructor and Student. The teacher and student
agents are trained in an adversarial setup. While the student is a
goal-conditioned RL agent that aims to complete the tasks provided
to it as natural language instructions, teachers are trained to pro-
pose tasks/goals by acting in the environment that student agent
cannot achieve — this results in teachers providing a curriculum
of incrementally harder goals for the student agent to train on. We
train multiple teacher agents to assist in better generalization of
the student agent by proposing diverse goals. Note that the Teacher
agents by themselves are not capable of describing what they have
done or instructing the agents. It is the role of the instructor agent to
describe the teacher’s trajectory or key events in natural language
and then convert it to a form of instruction for the student agent to
act and train upon. Formalizing our problem set-up as below:
Given: A student agent S, a set of teacher agents {𝑇1,𝑇2, · · · ,𝑇𝑁 }
and an instructor agent 𝐼
To-do: Learn an optimal goal-conditioned policy 𝜋𝑆 for the student
agent that can follow natural language instructions generated by 𝐼
by observing the evolving teacher policies {𝜋𝑇1 , 𝜋𝑇2 , · · · , 𝜋𝑇𝑁 }
Assumptions: We make the following assumptions (1) All the
teacher agents start from scratch with a random policy and only
learn from feedback (reward) related to the student’s performance
(2) Instructor agent is capable of describing the actions of the teacher
in natural language and is equipped with a pre-trained LLM to con-
vert these descriptions to several synonymous instructions.

Algorithm: In every student-teacher rollout, one of the teachers
𝑇𝑖 acts in the environment by choosing an action according to its
policy 𝜋𝑇𝑖 based on the current observation until the end of episode
(of predefined length). The trajectory of the teacher is then used
by the Instructor to describe in natural language the course of
events that the teacher has triggered. In one episode rollout, the
teacher could trigger multiple events. The instructor first describes
these events in natural language (e.g., "you are standing in-front
of red ball") and then converts this description to the form of an
instruction (e.g., "go to the red ball"). It then uses a pre-trained
language model 𝜙𝐼 to generate𝑚 synonymous instructions. These
events then become the goal for the student agent. Events are
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Figure 1: GLIDE-RL framework with three independently functioning parts: the teacher, instructor and student.

fed to the student agent one at a time, in the exact same order as
the teacher has triggered them, in the form of natural language
instructions. Thus, in addition to its current observation, the goal-
conditioned student agent also takes in randomly sampled task/goal
from the instruction set. The language model 𝜙𝐿 transforms the
natural language instruction to an embedding (a tensor) which
is then concatenated with the input observation. This combined
input representation is then passed through Deep-Q-Network to
obtain the Q-values for every action. The action corresponding to
the maximum Q-value is chosen. At each time step, the student
gets 0 reward if it doesn’t finish the task/goal. If it finishes, it gets a
positive reward. The student continues to act in the environment
until it finishes all the goals or until the maximum episode length.
The student and the teacher network is updated using standard
D3QN loss [5]. An additional behavior cloning loss [10] is used to
update the student agent.

3 RESULTS

Figure 2: Success rate of different variations on the test set. The
plot shows the mean and standard deviation over 5 seeds

Firstly, we train a student conditioned on one-hot goals (onehot
in figure 2) as a baseline. Teachers’ functionality doesn’t change
here. But, for the student, instead of receiving language embeddings
from a language model as inputs, it receives pre-designed one-hot
encoding for each event. This baseline gives us an estimate of the
upper bound of success rate achievable. Also note that, with one-hot

encodings, the agent does not have any generalization capabilities
as the size of the encodings cannot be increased to accommodate
the unseen goals.

Next, we train the student conditioned on the embeddings from
the language model using GLIDE-RL (4-teachers). We present the
student with the synonymous events while training as described
before. The aim of this is to gauge how well can the student per-
form on the test set as compared to previous baseline. To show
the importance of the curriculum generated by the teachers, we
train a student with random teacher agents (4-random-teachers),
and another one-hot student trained directly on the test set but
without any teachers or curriculum (onehot-testset). While the
random-teachers don’t learn adversarially with the student, and
hence provide no curriculum, the onehot-testset baseline doesn’t
have the notion of teachers. We introduced onehot-testset baseline
to understand how challenging the task is without a curriculum set
by the teachers. To understand the necessity of Behavioral Cloning
Loss (BCL), we train another baseline (no-bcl).

Figure-2 shows the importance of teachers (and curriculum) for
the student’s performance as the students trained without the teach-
ers’ curriculum fail to perform well (measured in terms of success
rate), even when trained directly on the test set. Furthermore, we
see that the student with goals conditioned as language embed-
dings is able to perform comparable to the one with one-hot goals
(upper-bound). Moreover, with the no-bcl baseline, we establish
the importance of the behavioural cloning loss during the training
process. As future work, we would like to extend this work to more
complex environments including training the instructor agent. Part
of the experiments were run using the Cogment [3, 11]. For more
detailed experimental results and video demonstrations, visit our
project page at https://ai-r.com/research/gliderl
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