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ABSTRACT
To maintain telecom services even during power outages, maintain-

ing the power of the base stations is essential. Here, we consider a

solution where Electric Vehicles (EVs) go around to directly sup-

ply their power to the base stations whose power is continuously

decreasing. The goal is to find EV routes that minimize both total

travel distance and the number of downed base stations. In this

paper, we formulate this routing as a new variant of the Electric Ve-

hicle Routing Problem (EVRP) and propose a solver that combines

a rule-based vehicle selector and a reinforcement learning-based

node selector. We evaluate our solver on synthetic datasets and

real datasets. The results show that our solver outperforms base-

lines in terms of the objective value and computational time. See

https://ntt-dkiku.github.io/rl-evrpeps for details (full paper, code,

visualization, etc).
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1 INTRODUCTION
With natural disasters increasing [4], maintaining infrastructures

during disasters is becoming more critical. As a telecoms company,

our company has a mission to maintain telecoms services even

during power outages caused by disasters. One of the most funda-

mental challenges here is maintaining the battery of telecoms base
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stations. Although each base station has a backup battery, main-

taining the base station’s power over extended periods requires

power supply from external sources.

This paper addresses this challenge by leveraging Electric Ve-

hicles (EVs) as the external source: EVs go around to supply their

power to the base stations directly. In contrast to existing ap-

proaches [3, 7–9], this approach works without Vehicle-to-Grid

systems, whose installation cost is high, and is effective for the case

where the number of EVs is less than that of base stations.

Here, we formulate the base station relief as a new variant of

the Electric Vehicle Routing Problem (EVRP) [2], termed EVRP for

Emergency Power Supply (EVRP-EPS). We also propose a solver

that combines a rule-based vehicle selector and a reinforcement

learning-based node selector. In contrast to existing EVRPs, EVRP-

EPS additionally considers the battery discharge of EVs, as well

as mandatory details such as preparation/cleanup time and EV

discharge limit. With reinforcement learning, our solver enables

deriving reasonable routes within a short time.

2 PROBLEM SETTING
Objective. Given a time horizon 𝑇 (i.e., expected blackout dura-

tion) and sets of base stations, charge stations, and EVs, the objective

is to maintain as many base station batteries as possible during the

time horizon while minimizing the total travel distance of all EVs.

Formally, the objective function below is minimized.
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where 𝐴𝑘 is the number of 𝑘-th EV’s actions, d(·, ·) is the distance
between two points, 𝜋𝑘 (𝑎) is the index of node visited by 𝑘-th EV

at 𝑎-th action, 𝛼 is the positive weighting factor, bsb
𝑡
𝑖 is the 𝑖-th

base station’s battery at the time 𝑡 , 𝑁
bs/ev

is the number of base

stations/EVs, and I(·) is the Boolean indicator function.

Action Space and Sub-actions. EVs cycle through an action

(move) and three subsequent sub-actions (prepare, discharge/charge,
and clean-up). The action space here is to determine which node

EVs move to from the current nodes. The sub-actions are determin-

istically and automatically conducted depending on the state when

EVs arrive at base/charge stations.
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Table 1: Our solver v.s. baselines. Metrics are averaged travel distance per EV (dist (km)), the time average of # downed base
stations (down), the objective value with 𝛼 = 100 (obj), and total computational time (time). The smaller, the better for all values.

Syn-ev6 (100 samples) Syn-ev12 (100 samples)

𝑇 = 12h 𝑇 = 24h 𝑇 = 12h 𝑇 = 24h

Model dist down obj time dist down obj time dist down obj time dist down obj time

w/o EVs - 20.1 - - - 33.3 - - - 20.1 - - - 33.3 - -

Greed 189 17.7 37.2 3s 312 29.8 62.8 3s 192 15.5 32.9 1s 317 26.6 56.4 2s

Rand (S=12800) 142 15.3 32.0 1m 263 26.5 55.5 2m 157 11.8 25.1 3m 283 21.1 45.1 6m

Ours (G) 81 12.7 26.1 1s 127 25.5 52.3 2s 80 6.80 14.4 1s 134 18.2 37.7 2s

Ours (S=1280) 79 12.4 25.7 48s 125 24.8 50.9 1m 77 6.54 13.9 1m 134 17.4 36.2 2m

Ours (S=12800) 78 12.4 25.6 8m 124 24.7 50.7 14m 76 6.50 13.8 12m 134 17.3 35.9 21m

Real-ev6 (1 sample) Real-ev12 (1 sample)

𝑇 = 12h 𝑇 = 24h 𝑇 = 12h 𝑇 = 24h

Model dist down obj time dist down obj time dist down obj time dist down obj time

w/o EVs - 8.25 - - - 17.5 - - - 11.3 - - - 25.9 - -

Greed 30 5.87 19.4 1s 37 13.5 42.8 1s 89 9.34 21.7 1s 108 21.0 47.3 1s

Rand (S=12800) 32 3.74 13.1 2s 63 10.0 33.8 2s 128 4.21 11.2 5s 207 14.0 33.7 9s

Tsn (Δ𝑡 = 1.0) 14 5.77 18.3 32s 52 12.2 40.1 30m 60 4.08 9.83 6s 113 13.9 32.0 9m

Tsn (Δ𝑡 = 0.5) 18 3.36 11.2 3m 33 10.2 32.9 30m 55 2.88 7.15 35s 134 13.0 30.3 30m

Ours (G) 15 3.19 10.5 1s 25 8.73 27.8 1s 56 0.99 3.05 1s 92 11.7 27.0 1s

Ours (S=1280) 17 2.19 7.57 1s 28 8.12 26.1 2s 59 0.62 2.28 4s 110 10.9 25.6 7s

Ours (S=12800) 16 2.09 7.20 9s 30 8.03 26.0 15s 57 0.54 2.09 29s 101 11.0 25.5 48s

3 METHODOLOGY
Our solver generates EV routes by repeating the two phases: the

vehicle selector selects an EV; the node selector determines the

next destination node (base/charge station) of the selected EV. In

the following, we describe the details of each selector.

Vehicle selector. In the action/sub-action cycle, EVs can start

to move to the next destination only after finishing the clean-up.
Therefore we employ a rule-based vehicle selector that always

selects an EV finishing clean-up the soonest from the current time.

Node selector. After applying a linear projection to input features

(the environment state of when an EV is selected) 𝒉(0) , the node
selector produces the final embeddings of nodes and EVs by stacking

𝐿 of two-tower Transformer encoders:

𝒉(𝑙 )
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where Xfmr
(𝑙 )
node𝑛

,Xfmr
(𝑙 )
ev𝑘

are the 𝑙-th Transformer encoders [5]

for nodes and EVs, of which subscript indicate the output element.

Note that no positional encoding is used here as nodes and EVs are

permutation-invariant.

Finally, the visit probability for each node is computed from the

scaled dot-product attention between the final embeddings of nodes

and the selected EVs, as follows.

𝑢 (𝑘, 𝑛) =
 𝐶 · tanh

(
𝒒⊤
ev𝑘

𝒌node𝑛√
𝑑k

)
if node𝑛 is feasible,

−∞ otherwise,

(4)
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where𝐶 (= 10) is the clipping width, the query 𝒒ev𝑘 =𝑊𝑄𝒉(𝐿)
ev𝑘

, the

key 𝒌
node𝑛

=𝑊𝐾𝒉(𝐿)
node𝑛

, 𝑑
k
is the dimension of the key,𝑊𝑄 ,𝑊𝐾

are trainable projection matrices, and
¯𝑘 is the index of the selected

EV. In terms of node feasibility, a base station is feasible if no other

EVs visit it, and the selected EV can return to a charging station

without running out of battery after visiting that base station. A

charge station is feasible if the selected EVs can reach it from the

current node without running out of battery.

The parameterized policy 𝑝𝜃 is trained by REINFORCE [6] with

a greedy rollout baseline [1] so that Eq. (1) is minimized. For the

decoding (i.e., route generation), we employ the sample decoding.

4 EXPERIMENTS
Setups. We evaluate our solver on synthetic datasets (Syn-ev6,

Syn-ev12) and real datasets (Real-ev6, Real-ev12). The baselines

in the evaluation are two naive approaches (Greed and Rand) and

a constraint programming solver on a time-space network (Tsn).

Greed and Rand replace the node selector of our solver with a

greedy node selection that selects a base station with the lowest

battery and a random node selection, respectively. Tsn solves sub-

problems divided by a heuristic clustering, meaning that solutions

derived by Tsn are near-optimal. We set the time limit for solving

EVRP-EPS to 30 minutes according to the actual requirements.

Results. Table 1 shows the evaluation results. We report the results

of Tsn with two discrete time resolutions Δ𝑡 = 0.5, 1h and those

of our solver with different decoding: greedy (G) and sampling de-

coding (S=#samples). Overall, our solver consistently outperforms

the baselines in terms of the objective value and computational

time. In particular, S=12800 provides the minimum objective value

in all cases. Regarding computational scalability, Tsn exhibits an

exponential increase in computational time as the time horizon

is doubled, whereas our solver restricts the escalation to a linear

increment. Our solver also shows the scalability for the increase of

the number of nodes and EVs (see the full paper), demonstrating

the capability of handling larger-scale situations (i.e., a longer time

horizon and more nodes/EVs) within a short time.

5 DISCUSSION
The experimental results reveal that our solver (reinforcement

learning-based solver) is effective in solving the complicated EVRP

within a limited time. On the other hand, some limitations remain,

including the balance of travel distance among EVs and the es-

timation of travel time. We will address them by introducing a

route-balancing strategy and considering actual travel distance and

uncertainty of travel time due to traffic situations. In terms of un-

available roads due to a disaster, we may handle them by obtaining

real-time road conditions from a provider and masking unavailable

roads. We plan to validate the ideas in a demonstration experiment.
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