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ABSTRACT
We formulate the problem of optimizing an agent’s policy within
the Markov decision process (MDP) model as a difference-of-convex
functions (DC) program. The DC perspective enables optimizing
the policy iteratively where each iteration constructs an easier-to-
optimize lower bound on the value function using the well known
concave-convex procedure. We show that several popular policy
gradient based deep RL algorithms (both for discrete and continu-
ous state, action spaces, and stochastic/deterministic policies) such
as actor-critic, deterministic policy gradient (DPG), and soft actor
critic (SAC) can be derived from the DC perspective. Addition-
ally, the DC formulation enables more sample efficient learning
approaches by exploiting the structure of the value function lower
bound, and when the policy has a simpler parametric form, allows
using efficient nonlinear programming solvers. Furthermore, we
show that the DC perspective extends easily to constrained RL
and partially observable and multiagent settings. Such connections
provide new insight on previous algorithms, and also help develop
new algorithms for RL.
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1 INTRODUCTION
In reinforcement learning (RL), an agent seeks to optimize its long
term reward by repeated interactions with its environment, and us-
ing past interactions to improve its behavior policy. The RL problem
is often formulated using Markov decision processes (MDPs) [17].

Existing RL approaches are based on policy optimization, and
value iteration. In policy optimization, several policy gradient ap-
proaches have been developed that directly optimize the agent’s
policy using value function gradients. Policy gradient approaches
have been developed for several settings such as for stochastic and
deterministic policies [7, 14, 15, 18], and for continuous state, action
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spaces [6, 11]. Value based methods (such as Q-learning) learn the
value function (or action-value function) from the data gathered via
the environment simulator [20, 21]. Recently, maximum entropy RL
based approaches augment the standard reward with the entropy
of the policy [5, 6].

We focus on policy optimization for RL. Our contributions are as
follows. First, we show how policy optimization can be formulated
as a difference-of-convex functions (DC) program [12, 22]. Second,
we show how several diverse policy gradient approaches for both
deterministic and stochastic policies (and discrete/continuous state,
action spaces, entropy-augmented rewards) can be derived from the
DC perspective. In addition to being a unified policy gradient frame-
work, the DC perspective provides opportunities for more sample
efficient approaches by utilizing the structure of a lower bound on
the value function derived using the concave-convex procedure
(CCP), an iterative solution strategy for DC programs [12]. Third,
we show the DC formulation extends easily for settings such as
resource constrained RL [3], and multiagent decision making [9, 16].

Related work: There have been relatively few works exploring
DC programming for RL. Piot et al. (2014) formulate optimizing the
norm of the optimal Bellman residual as a DC program. However,
their formulation does not show connections of DC programming
with standard policy gradient methods used in RL. In contrast, our
DC formulation extends easily to multiagent settings due to its
close connections with policy gradient methods. Another closely
related direction is probabilistic inference based optimal control.
Reinforcement learning (and planning) in MDPs (and POMDPs) has
been reformulated to that of probabilistic inference in a graphical
model [4, 8, 10, 14, 19]. We show that for discrete state, action and
stochastic policy setting, the value function lower bound optimized
iteratively by CCP is exactly the same as the one derived using
previous inference based approaches.

2 MDP AND RL SETTING
A Markov decision process (MDP) model is defined using the tu-
ple (S,A,T , r ). An agent can be in one of the states st ∈ S at time
t . It takes an action at ∈ A, receives a reward r (st ,at ), and the
world transitions stochastically to a new state st+1 with proba-
bility P(st+1 |st ,at ) =T (st ,at , st+1). We assume that rewards are
non-negative (r ≥ 0), and future rewards are discounted using a
factor γ < 1. Initial state distribution is denoted using b0(s). An
agent’s behavior is governed by a policy π with π (a |s) denoting the
probability of taking action a given state s . We first consider the
standard setting with discrete state, action spaces, and stochastic
policy. In the RL setting, transition and reward functions are not
known.
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3 DC PROGRAMS AND
CONCAVE-CONVEX PROCEDURE

We first describe the difference-of-convex functions (DC) program-
ming framework, and the concave-convex procedure (CCP) to solve
DC programs [12, 22]. Our goal would be to reformulate the MDP
objective as an instance of DC programming. The DC programming
and concave-convex procedure are a popular approach to optimize a
general non-convex function expressed as a difference of two con-
vex functions. We describe it here briefly. Consider the optimization
problem:

min{д(x) : x ∈ Ω} (1)

where д(x) = u(x) −v(x) is an arbitrary function with u , v being
real-valued convex functions and Ω being a (possibly non-convex)
set. The CCP method provides an iterative procedure that generates
a sequence of points x l by solving the following convex program:

x l+1 = argmin {u(x) − xT ∇v(x l ) : x ∈ Ω}︸                             ︷︷                             ︸
д̂(x ;x l )

(2)

Each iteration of CCPmonotonically decreases the objectiveд(x)
and converges to a stationary point [12]. The key benefit of CCP
is that problem (2) is often much easier to solve than the original
problem (1) as the objective in (2) is convex (first term is convex,
and second term is linear in x ).

4 DC FORMULATION FOR MDPS
We first show how the MDP objective can be viewed from the lens
of DC programming. We first focus on discrete state, action spaces,
and stochastic tabular policies. Let where τ0:T = (s0,a0, . . . , sT ,aT )
be a T-step state-action trajectory. The probability Pπ (τ0:T ) is:

Pπ (τ0:T )=b0(s0)π (a0 |s0)
T∏
t=1

T (st−1,at−1, st )π (at |st ) (3)

Based on the above expression, the policy objective is:

J (π )=
∞∑
T=0

∑
τ0:T

b0(s0)π (a0 |s0)
T∏
t=1

[
T (st−1,at−1, st )π (at |st )

]
× γT rT (sT ,aT ) (4)

As each π (a |s) must be positive, we use the substitution π (a |s) =
exp(λ(a |s)), and the objective becomes:

J (λ)=
∞∑
T=0

∑
τ0:T

b0(s0)
[ T∏
t=1

T (st−1,at−1, st )
]

e
∑T
t=0 λ(at |st )γT rT (sT ,aT ) (5)

Notice that J (λ) is convex in λ as it is a non-negative combination
of terms e

∑T
t=0 λ(at |st ) (initial state distribution, transition function

and reward function are non-negative). We relate maximizing J to
the DC program structure (1) as follows:

min
λ∈Λ

0 − J (λ) (6)

where function u is 0, and v is J (λ), resulting in the DC objective
(u−v). The setΛ is the set of all λ that satisfy the normalization con-
straints

∑
a e

λ(a |s)=1 ∀s . We note that constraints are non-convex.

Therefore, the above problem is still a non-convex optimization
problem. However, as we show next, the CCP iteration in (2) is
easier to solve than the original problem. Let λl denote the current
estimate; next estimate is given as λl+1=argminλ∈Λ(0−λ ·∇J (λ

l )).
It is given also as:

max
λ∈Λ

∑
s,a

λ(a |s)∇λ(a |s) J (λ
l ) (7)

The gradient at λl can be analytically derived as ∇λ(a |s) J (λl )=
dl (s,a)Ql (s,a) where dl (s,a) is the occupancy measure for the pol-
icy encoded by λl , andQl (s,a)=E

[ ∑∞
α=0 γ

α rα |s0=s,a0=a
]
is the

action value function.
CCP Iteration: The CCP iteration (7) using the gradients is

given as: maxλ∈Λ
∑
s,a λ(a |s)d

l (s,a)Ql (s,a) In the above problem,
we can again re-substitute λ(a |s) = lnπ (a |s) to get:

max
{π (a |s)∀s,a }

∑
s,a

dl (s,a)Ql (s,a) lnπ (a |s) (8)∑
a

π (a |s) = 1 ∀s (9)

The above optimization problem is easier to solve than the original
problem—occupancy measure and action-value function are for
previous parameter estimate (or previous policy), and only vari-
ables to optimize are π (a |s). In fact, the above problem is a convex
optimization problem with closed form solution easily computed
by solving KKT equations [2] as π l+1(a |s) = π l (a |s)Q l (s,a)∑

a π l (a |s)Q l (s,a)
.

This result is already known— Toussaint and Storkey derive the
same optimization formulation (8) by casting MDP planning to that
of probabilistic inference; Schulman et al. use a stochastic compu-
tation graph based modeling of an MDP and arrive at the same
formulation as (8). However, such formulations require rewards to
not being deterministically influenced by the parameters to opti-
mize [14]. This assumption breaks down for deterministic policies
(action at =µ(st ), where µ is the policy, and rt = r (st , µ(st ))), and
also when optimizing maximum entropy policies [6]. In contrast to
such previous approaches, we show in the paper’s extended version
that the DC formulation is highly flexible, and even extends in such
cases.
Partially observable and multiagent setting:We also show (in
extended version) that decision making in partially observable
multiagent systems using models such as decentralized partially
observable MDPs [1] can be formulated as a DC program, and
CCP iteration can be approximately solved using gradient based
methods. Thus, the DC perspective provides a high generalization
ability to solve decision making problems in a variety of settings.

5 CONCLUSION
We have formulated the problem of optimizing an agent’s policy
in an MDP framework to that of a DC program. As a result, we
applied the well known CCP approach for solving DC programs to
that of planning and RL. We show that such connections provided
new insights on several existing policy gradient approaches in a
variety of settings. Such connections open the door to develop new
approaches by exploiting the DC programming for RL.
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