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ABSTRACT
In reinforcement learning (RL), the class of deep deterministic off-
policy algorithms is effectively applied to solve challenging con-
tinuous control problems. Current approaches commonly utilize
random noise as an exploration method, which has several draw-
backs, including the need for manual adjustment for a given task
and the absence of exploratory calibration during the training pro-
cess. We address these challenges by proposing a novel guided
exploration method that uses an ensemble of Monte Carlo Critics
for calculating exploratory action correction. The proposed method
enhances the traditional exploration scheme by dynamically ad-
justing exploration. Subsequently, we present a novel algorithm
that leverages the proposed exploratory module for both policy and
critic modification. The presented algorithm demonstrates superior
performance compared to modern RL algorithms across a variety
of problems in the DMControl suite.
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1 INTRODUCTION
In reinforcement learning (RL), exploration methods can be broadly
categorized as undirected or directed [8]. Undirected methods in-
volve generating random exploratory actions based on a desired
exploration-exploitation trade-off, while directed algorithms rely
on information provided by a policy or a learned world model.

In the context of continuous control problems, the class of deep
deterministic off-policy methods has gained high popularity in the
RL community due to its implementation simplicity and state-of-
the-art results. From an exploration perspective, algorithms such as
DDPG [6] and TD3 [3] utilize Gaussian or time-dependent Ornstein-
Uhlenbeck noise applied to deterministic actions. While serving as
a simple and effective exploration tool, methods based on random
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noise face several limitations, such as the need for manual adjust-
ment for a given task and the absence of exploratory calibration
during the training process.

We address the mentioned weaknesses of random exploration by
introducing a differentiable module capable of guiding a policy in a
purposeful exploratory direction. Specifically, we advocate using an
ensemble of Q-function approximations trained to predict Monte
Carlo Q-values as this exploratory module. Through optimizing
multiple independent predictions and utilizing the action gradient
derived from calculated variance, we can obtain an uncertainty
estimate for a given state. Using this gradient, we introduce an
exploratory action correction aimed at exploring the least traversed
regions of the environment. We demonstrate that our proposed
exploration outperforms other exploration methods across a range
of continuous control tasks.

Additionally, we introduce a novel algorithm that leverages
the proposed uncertainty-based module for both the actor and
critic components of the model architecture. Our proposed method
demonstrates superior results when compared to modern RL algo-
rithms on a set of tasks from the DMControl suite [7]. The source
code is available at github.com/schatty/MOCCO.

2 PRELIMINARIES
We consider a standard RL setup, in which an agent interacts with
an environment E at discrete time steps aiming to maximize the re-
ward signal. The environment is a Markov Decision Process (MDP)
that can be defined as ⟨S,A,R, 𝜌, 𝛾⟩, where S is a state space,A is
an action space, R is a reward function, 𝜌 is a transition dynamics
and 𝛾 ∈ [0, 1] is a discount factor. At time step 𝑡 the agent receives
state 𝑠𝑡 ∈ S and performs action 𝑎𝑡 ∈ A according to policy 𝜋 , a
distribution of 𝑎 given 𝑠 that leads the agent to the next state 𝑠𝑡+1
according to the transition probability 𝜌 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ). After provid-
ing the action to E, the agent receives a reward 𝑟𝑡 ∼ R(𝑠𝑡 , 𝑎𝑡 ). The
discounted sum of rewards during the episode is defined as a return
𝑅𝑡 =

∑𝑇
𝑖=𝑡 𝛾

𝑖−𝑡𝑟 (𝑠𝑖 , 𝑎𝑖 ).
The RL agent aims to find the optimal policy 𝜋𝜃 , with parameters

𝜃 , which maximizes the expected return from the initial distribution
𝐽 (𝜃 ) = E𝑠𝑖∼𝜌𝜋 ,𝑎𝑖∼𝜋𝜃 [𝑅0]. The action-value function 𝑄 is at core
of many RL algorithms and denotes the expected return when
performing action 𝑎 from the state 𝑠 following the current policy 𝜋 :
𝑄𝜋 (𝑠, 𝑎) = E𝑠𝑖∼𝜌𝜋 ,𝑎𝑖∼𝜋 [𝑅𝑡 |𝑠, 𝑎].

3 METHOD OF GUIDED EXPLORATION
The proposed agent consists of two components: an actor-critic part
to provide a deterministic policy and an exploratory module that
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Table 1: A comparison of exploration approaches. Average
episodic score from 10 trials. Each trial is a mean of the last
10 episodes.

Task NO EXPL NORM OU RND GE

acrobot 0.65 0.59 1.67 0.67 150.46
point_mass 726.80 709.90 605.09 743.36 785.25
pendulum 247.411 359.94 215.13 241.13 792.33

walker-walk 921.80 940.80 953.13 881.04 955.977
walker-run 644.32 596.71 622.06 589.50 677.73

hopper-stand 56.40 34.86 58.67 51.91 602.14
hopper-hop 18.30 27.18 16.31 14.14 167.12
human-walk 3.32 79.16 30.02 129.83 329.25

adjusts the policy output action to facilitate directed exploration.
The deterministic policy 𝜋𝜃 (𝑠) is parameterized by 𝜃 and optimizes
reward maximization to produce a base action 𝑎b. The exploratory
module EM optimizes auxiliary intrinsic objective to produce an
exploratory action correction 𝑎e. The policy and the exploratory
module are jointly optimized to produce an additive action for
collecting transitions for off-policy updates:

𝑎 B 𝑎b + 𝑎e, 𝑎b ∼ 𝜋𝜃 (𝑠) (1)

For the actor-critic part, we use the TD3 algorithm [3] as a backbone.
The exploratory module EM𝜔 (𝑠 |𝜃 ) is parameterized by 𝜔 and

conditioned on policy parameters 𝜃 . The proposed controller fea-
tures an ensemble of Q-function approximators {𝑞1 (𝑠, 𝑎), ..., 𝑞𝑛 (𝑠, 𝑎)}
that predict the collected Monte Carlo Q-values. The values for the
update are sampled from a small experience replay buffer D𝑀𝐶

with recent trajectories collected by the policy. Given 𝑛 ensemble
predictions, the controller EM estimates prediction uncertainty as
the ensemble disagreement:

EM𝜔 (𝑠 |𝜃 ) B Var ({𝑞1 (𝑠, 𝑎), ..., 𝑞𝑛 (𝑠, 𝑎))}), (2)

where 𝑞𝑖 (𝑠, 𝑎) = E𝑠∼D𝑀𝐶 ,𝑎∼𝜋𝜃 [𝑅], 𝑖 ∈ [1..𝑛]. This disagreement
reflects both epistemic uncertainty of controller parameters and
aleatory uncertainty of the collected Monte Carlo Q-values. During
optimization, controller’s objective is to reduce uncertainty in a
supervised fashion by minimizing square distance between the
predicted and collected returns:

𝐽𝜙 =

𝑛∑︁
𝑖=1

(𝑄𝑀𝐶 (𝑠, 𝑎) − 𝑞𝑖 (𝑠, 𝑎))2, (3)

where (𝑠, 𝑎) is a state-action pair sampled from D𝑀𝐶 with the
corresponding Monte Carlo Q-value 𝑄𝑀𝐶 (𝑠, 𝑎). Taking the gradi-
ent of the controller w.r.t. action, we obtain the direction towards
maximizing the uncertainty under current controller parameters 𝜔 :

∇𝑎EM𝜔 = ∇𝑎Var ({𝑞1 (𝑠, 𝑎), ..., 𝑞𝑛 (𝑠, 𝑎))}) |𝑎∼𝜋𝜃 (𝑠 ) . (4)

The gradient value is then normalized with gradient norm and
scaled with running mean and standard deviation for each action
component separately producing exploratory action 𝑎e.

Table 1 shows the results for 8 control tasks from DMControl
Suite. The studied exploration methods are as following: actions
are sampled without noise (NO EXPL), with Normal Gaussian noise
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Figure 1: Learning curves of evaluation algorithms. The re-
sults are averaged across 10 random seeds.

(NORM), temporally correlated noise drawn from an Ornstein-
Uhlenbeck process (OU), curiosity-based exploration with RND
method from [1], and with proposed guided exploration method
(GE). Results demonstrate higher rewards of guided exploration
over the conventional approaches for all environments.

4 MOCCO ALGORITHM
Based on the presented technique of guided exploration, we pro-
pose a novel deep RL algorithmMonte Carlo Critic Optimization
(MOCCO) that incorporates an ensemble of Monte Carlo critics not
only for the actor, as an exploratory module, but also for the critic
to alleviate Q-value overestimation. Several works have studied
Q-value overestimation in continuous control setting [2, 4, 5]. Here,
we propose to use a mean from the ensemble of Monte Carlo values
as a second pessimistic Q-value estimate during critic optimization,
resulting in the following critic’s objective:

𝐽𝑄 = (𝑄 −𝑄 ′)2 + 𝛽 · (𝑄 −𝑄𝑀𝐶 )2, (5)

where 𝑄𝑀𝐶 = 𝜇 ({𝑞1, ..., 𝑞𝑛}), and 𝛽 is a coefficient controlling
an impact of the pessimistic estimate. For the given state-action
pair (𝑠, 𝑎) the critic estimate 𝑄 (𝑠, 𝑎) is generally greater than the
corresponding Monte Carlo estimate 𝑄𝑀𝐶 , as the latter predicts
estimates of the past sub-optimal policies. In RL, Monte Carlo es-
timates have high variance and low bias, whereas one-step TD
methods have less variance but can be biased. Here, we combine
both methods during Q-function optimization.

Practically, the MOCCO algorithm is based on TD3 with the
following differences: (1) it uses guided exploration during action
selection; (2) it does not use second TD critic; (3) the mean of
MC-critics ensemble is used during the critic optimization. The
comparative results between the MOCCO algorithm and modern
RL algorithms is depicted in Figure 1. MOCCO outperforms other
approaches, sometimes with significant margins, e.g. for acrobot,
pendulum, and hopper domains.
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