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ABSTRACT
Centralized trainingwith decentralized execution (CTDE) is awidely
used learning paradigm that has achieved significant success in
complex tasks. Drawing inspiration from human team cooperative
learning, we propose a novel paradigm that facilitates a gradual
shift from explicit communication to tacit cooperation. In the ini-
tial training stage, we promote cooperation by sharing relevant
information among agents and concurrently reconstructing this
information using each agent’s local trajectory in a self-supervised
way. We then combine the explicitly communicated information
with the reconstructed information to obtain mixed information.
Throughout the training process, we progressively decrease the
proportion of explicitly communicated information, facilitating a
seamless transition to fully decentralized execution without com-
munication.

KEYWORDS
Reinforcement Learning; Multi-agent System; Tacit Cooperation.

ACM Reference Format:
Dapeng Li, Zhiwei Xu, Bin Zhang, Guangchong Zhou, Zeren Zhang, andGuo-
liang Fan. 2024. From Explicit Communication to Tacit Cooperation: ANovel
Paradigm for Cooperative MARL: Extended Abstract. In Proc. of the 23rd
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 3 pages.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

1 INTRODUCTION
Cooperative multi-agent reinforcement learning (MARL) has made
significant progress in practical applications in recent years, such
as traffic light control [1, 18], autonomous driving [11], game play-
ing [2, 15], and multi-robot control [3, 8]. To effectively address
multi-agent learning problems, various algorithms have emerged.
Among these methods, the paradigm of centralized training with
decentralized execution (CTDE) has gradually become the most
concerned MARL paradigm due to its scalability and ability to
handle non-stationary problems. The CTDE paradigm serves as
a hybrid approach that combines the advantages of both central-
ized [5, 6] and decentralized [13] learning methods. The funda-
mental concept of the CTDE paradigm is that agents can access
global information in a centralized manner during the training pro-
cess while operating solely on local observations in a decentralized
manner during execution. Based on this approach, many MARL
algorithms [4, 7, 9, 12, 16, 17, 19] have demonstrated exceptional
performance in some complex decision-making tasks [10].

Drawing inspiration from human teamwork, this paper proposes
a novel paradigm that can transition from explicit communication
to TAcit COoperation (TACO). This paradigm enables agents to
share relevant information via an attention mechanism during the
initial training stage while simultaneously reconstructing this in-
formation using local observations in a self-supervised manner.
We then obtain mixed information by weighted sums of the recon-
structed information and true information. As training progresses,
the accuracy of the reconstructed information steadily improves.
Consequently, we can reduce reliance on communication by gradu-
ally decreasing its proportion in the mixed information, ultimately
achieving the ability to infer teammate’s intentions without actual
communication.
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2 FROM EXPLICIT COMMUNICATION TO
TACIT COOPERATION

2.1 The TACO Framework
Communication Abstract Module: The communication abstract
module applies a self-attention mechanism [14] to aggregate highly
relevant information from other teammates. Given the hidden state
of agent 𝑖 and agent 𝑗 , the attention weight 𝑤𝑎𝑡𝑡

𝑖, 𝑗
for agent 𝑖 to

agent 𝑗 can be computed by using a bilinear mapping and then
normalizing it with a softmax function, as shown below:

𝑤𝑎𝑡𝑡
𝑖, 𝑗 =

exp(ℎ𝑇
𝑗
𝑊𝑇

𝑘
𝑊𝑞ℎ𝑖 )∑

𝑗≠𝑖 exp(ℎ𝑇𝑗𝑊
𝑇
𝑘
𝑊𝑞ℎ𝑖 )

, (1)

Tacit Reconstruct Module: The tacit reconstruct module is
responsible for approximating the relevant attention information
based on the agent’s own local history trajectory. To achieve this,
we use a two-layer fully connected network with the Relu activation
function for simplicity. Specifically, the reconstruct network takes
the hidden stateℎ𝑖 of agent 𝑖 as input and outputs an approximation
𝑣𝑖 of the actual relevant attention information 𝑣𝑖 .

From Communication to Tacit Cooperation: To ensure a
successful transition from communicate to tacit, we obtain the
mixed information 𝑣𝑖 by taking the weighted average of the real
attention information 𝑣𝑖 and the reconstructed information 𝑣𝑖 as
follows:

𝑣𝑖 = (1 − 𝛼)𝑣𝑖 + 𝛼𝑣𝑖 . (2)
The mixed weight 𝛼 starts with an initial value 𝛼𝑖𝑛𝑖𝑡 and using
a simple linear decreasing schedule, given by 𝛼𝑡 = max(𝛼𝑖𝑛𝑖𝑡 −
𝑡Δ𝛼, 𝛼min), which update during each training step. Therefore, as
the training progresses, the proportion of explicit communication
information in the mixed information gradually decreases. To make
sure the agent can entirely transmit to fully tacit before training is
completed, we usually set the 𝛼𝑖𝑛𝑖𝑡 = 1, 𝛼min = 0, and Δ𝛼 ≥ 1

𝑡max
.

The mixed information 𝑣𝑖 and the hidden state ℎ𝑖 are concatenated
to input MLP to obtain 𝑄𝑖 (𝜏𝑖 , 𝑢𝑖 , 𝑣𝑖 ). The mixing network decom-
poses the joint action value function𝑄𝑡𝑜𝑡 into the individual action
value estimation 𝑄𝑖 .

2.2 Overall Learning Objective
We now introduce the learning objectives of TACO, which include
two parts: the reinforcement learning part that tries to minimize the
TD error, and the mixed information part that attempts to minimize
the reconstruct error.

The reinforcement learning part end-to-end optimizes the same
loss function as QMIX [9]:

LTD =
(
𝑄𝑡𝑜𝑡 (𝑠,𝝉, 𝒖) − 𝑦𝑡𝑜𝑡

)2
, (3)

where 𝑦𝑡𝑜𝑡 = 𝑟 + 𝛾 max𝒖 ′ 𝑄𝑡𝑜𝑡

(
𝑠′,𝝉′, 𝒖 ′

)
. To achieve the goal of

enforcing the reconstructed information 𝑣𝑖 to be as close as possi-
ble to its corresponding true attention information 𝑣𝑖 , TACO also
includes a mixed information part that minimizes reconstruct loss.
The similarity loss between the true relevant attention information
𝑣𝑖 and the reconstructed information 𝑣𝑖 is measured by using the
MSE loss function:

LRec =
1
𝑛

𝑛∑︁
𝑖=0

MSE(𝑣𝑖 , 𝑣𝑖 ) =
1
𝑛

𝑛∑︁
𝑖=0

(𝑣𝑖 − 𝑣𝑖 )2 . (4)
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Figure 1: Performance comparisonwith baselines in different
SMAC scenarios.

Both two parts are optimized simultaneously during training.
Thus, the total loss function can be written as:

L𝑡𝑜𝑡 = LTD + 𝛽LRec, (5)

where the 𝛽 is a weighting term. For different complex scenarios,
we can set different 𝛽 to change the proportion of reconstruct loss
in the gradient update. It should be noted that the abstract module
is updated by both the TD loss and the reconstruct loss gradients
in Eq. (5).

3 EXPERIMENTS
We applied our method and baselines to the StarCraft II Multi-
Agent Challenge benchmark, which includes a series of scenarios
representing different levels of challenge.

As shown in Figure 1, there is not much difference between
QMIX and QMIX-Attention in some relatively simple scenarios
(5m_vs_6m and 2c_vs_64zg). However, the NDQ method performs
poorly and has low learning efficiency, possibly due to its con-
straints on message passing and message instability. The perfor-
mance of TACO is similar to that of QMIX-Attention and even
exceeds QMIX-Attention in 5m_vs_6m. In the super hard scenarios,
the classic CTDE method performs poorly due to a lack of effective
communication, whereas QMIX-Attention performs well. However,
QMIX-Attention’s success is mainly due to its lack of communica-
tion restrictions. The TACO method can achieve or even exceed the
performance of QMIX-Attention without utilizing actual communi-
cation during the end of the training, which significantly enhances
its practicality.

4 CONCLUSION
In this paper, we propose a simple and effective multi-agent collabo-
ration training paradigm called TACO. This approach allows agents
gradually replace explicit communication with reconstructed in-
formation, ultimately achieving efficient cooperation under fully
decentralized execution. Experimental results show that the TACO
method can achieve close or even better performance than the
same baseline using communication or global information without
sharing information.
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