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ABSTRACT
Municipalities maintain critical infrastructure through inspections,
both proactive and in response to complaints. For example, the
Chicago Department of Public Health (CDPH) periodically inspects
7000 food establishments to maintain the safety of food bought, sold,
or prepared for public consumption. Restless multi-armed bandits
(RMABs) appear to be a useful tool for optimizing the scheduling of
inspections, as the schedule aims to keep as many establishments
in the “passing” state subject to an action limit per period. However,
a key challenge arises: satisfying timing and frequency constraints.
Municipal agencies often provide an inspection window to each
establishment (e.g., a two-week period where an inspection will oc-
cur) and guarantee the minimum frequency of inspection (e.g., once
per year). We develop an extension to Whittle index-based systems
for RMABs that can guarantee both action window constraints and
minimum frequencies. Briefly, we take a Whittle index-based view,
enforcing window constraints by integrating the window structure
into individual MDPs, and frequency constraints through a higher-
level scheduling algorithm that aims to maximize the Whittle index.
We demonstrate our methods’ performance and scalability in ex-
periments using synthetic and real data (with 7000 establishments
inspected per year). Not only does our approach enforce constraints
more effectively than naive methods, but it also achieves higher
rewards, up to 20%.
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1 INTRODUCTION
Restless multi-armed bandits (RMABs) [12] describe a sequential
decision problem where an agent aims to manage a large popula-
tion of Markov decision processes (MDPs) that are independent
except for a shared action budget at each time step. We argue that
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RMABs are a valuable framework to study for two reasons. First,
they are a practical way of introducing a sequential component to
many real-world, large-scale optimization problems that are natu-
rally sequential without adding much complexity. Second, RMABs
can often be solved approximately optimally in a computationally
efficient manner through the use of the Whittle index heuristic [12]
if RMABs are under a technical condition known as indexability. As
a result, RMABs have attracted wide interest over the past several
decades in a large variety of resource allocation tasks, including
wireless networking [5], machine maintenance [1, 4], and planning
health interventions [3, 7, 9].

In practical applications of RMABs, it is common to place con-
straints on the timing and frequency of arm pulls. As a city service
example for this work, the Chicago Department of Public Health
(CDPH) provides establishments with an inspection window: they
state a particular time period during which the routine inspection
will occur. This window makes the inspection less disruptive to
the establishment. A similar constraint is used by a field study of
applying bandits in the child health setting [9], where each bene-
ficiary receives at most one call every fixed number of weeks. In
addition, CDPH guarantees at least one inspection per year, per
establishment, providing a baseline level of service. In this paper,
we develop methods for integrating action constraints into RMABs.

2 PROBLEM STATEMENT AND SOLUTIONS
2.1 Motivation Inspection RMAB
Motivated by the food establishment setting, we define a model
RMABwith action constraints. Due to unobserved binary states(good
or bad), each food establishment is described as a partially observed
Markov decision process (POMDP) [2], which we can rewrite as a
fully observed belief state MDP. Such an RMAB can be viewed as
a collapsing bandit [8] or a resetting bandit [6], both with indexa-
bility guarantees. For each underlying MDP, we have binary state
passive transitions 𝑃 (0)

𝑖
and active transitions 𝑃 (1)

𝑖
. Converting this

POMDP to a belief-state MDP yields a set of belief states that are
reachable from the passing state 𝑏1 = [0, 1] (as a column vector),
i.e., (𝑃 (0)

𝑖
)𝑡𝑏1, where 𝑡 is any non-negative integer. In practice, the

number of belief states of one MDP depends on the rate of MDP
mixing.

2.2 Action Windows and MDP Encoding
Action windows are introduced here as an exemplar for the family
constraints where the constraint can be directly encoded into the
RMAB structure, then we can apply whatever existing state-of-the-
art algorithms directly. In the food inspection domains in our work,
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Budget
380 400 416 430 450 500

2*IP Coverage 4327.40±26.02 4507.40±26.02 4650.20±25.55 4775.60±24.76 4939.10±21.59 5000.00 ± 0.00
Reward 40534.73±38.30 40751.29±38.28 40919.68±37.64 41065.62±36.41 41253.96±37.52 41324.07 ± 58.26

2*TCB Coverage 4091.00±32.96 4254.40±34.84 4385.40±33.91 4502.60±35.33 4654.70±32.60 4889.10 ± 25.36
Reward 40323.12±30.00 40515.14±28.15 40667.54±29.92 40800.59±30.54 40970.34±40.13 41242.30 ± 68.88

2*IP Coverage - - - 5000.00 ± 0.00 5000.00 ± 0.00 5000.00 ± 0.00
(Equality) Reward - - - 41186.96±40.37 41309.57±33.44 41331.99 ± 34.02

Table 1: Coverage (number of arms pulled in a year) and reward, tested on 5000 arms with a variable budget over 12 timesteps.
IP lookahead substantially increases coverage and slightly increases reward relative to TCB. IP (Equality) adds an equality
constraint that states that each arm must be pulled exactly once per year. Once the budget is high enough to make this problem
feasible, coverage is increased to full, and reward is not decreased by enforcing this constraint.

Number of Arms
Policy Budget 10 50 100 1000 5000
4*IP 1% - - 2.5% 2.4% 2.6%

5% - 9.6% 12.1% 12.2% 12.3%
10% 17.8% 19.0% 20.4% 20.1% 20.2%
20% 19.5% 19.1% 19.6% 19.4% 19.4%

4*TCB 1% - - 2.4% 2.4% 2.4%
5% - 9.4% 11.9% 12.0% 12.1%
10% 16.0% 18.4% 19.4% 20.1% 20.1%
20% 19.3% 19.5% 19.4% 19.3% 19.3%

4*RFP 1% - - 1.0% 0.9% 1.1%
5% - 8.4% 11.0% 11.1% 11.0%
10% 15.4% 17.7% 18.6% 19.5% 19.6%
20% 19.0% 19.1% 19.0% 18.9% 19.1%

4*WIP 1% - - 0.3% 0.3% 0.3%
5% - 1.1% 1.4% 1.5% 1.5%
10% 2.0% 2.5% 2.5% 2.6% 2.6%
20% 3.7% 3.7% 3.7% 3.6% 3.6%

Table 2: Percent improved reward vs. RP in synthetic data.
RFP and WIP do not explicitly model constraints and thus
achieve minimal improvement over RP. TCB and IP yield
dramatically increased rewards and larger increases with
more arms and budget, with IP outperforming TCB.

we add 2 pieces of information to the states in addition to the belief
𝑏 ∈ [0, 1], then modify the transitions to remove impacts of actions
out of the window.

• 𝑡 : the current timestamp. It will always increase by one after
one passive or active transition.

• 𝑚: a counter for the number of inspections remaining in the
window. An active transition decrements𝑚 by 1.

This encoding increases the number of states in the MDP by a factor
of𝑂 (𝐿𝑀), where 𝐿 is the number of all timestamps needed to track
and𝑀 is the total number of allowed actions during the window.

2.3 Whittle Index and Lookahead
For RMBAs, the most state-of-the-art solution is the Whittle Index
under a technical condition called indexability.

We are not aware of an existing class of indexable RMABs that
includes the action window MDPs with counters that we define in

this section. We empirically check for indexability by tracking the
set of passive states as the subsidy changes and find no violations.

Though editing the MDPs enforces the maximum action lim-
its, it is not possible to guarantee the minimums. Therefore, we
replace the Whittle Index heuristic with a sequential planning that
aims to maximize the sum of Whittle Indices of pulled arms over
a lookahead window via an Integer Programming technique. We

seek to maximize
𝑁∑
𝑖=1

𝑇∑
𝑡=1

𝑎𝑖,𝑡𝑤𝑖,𝑡 , subject to some constraints on

𝑎𝑖,𝑡 (e.g.,
𝑇∑
𝑡=1

𝑎𝑖,𝑡 = 1), then minimum or exact number of actions

constraints are fulfilled. This lookahead problem is reducible into a
variant of weighted 𝑏-matching problem [11], which can be solved
in polynomial time 𝑂 ( |𝑉 |2max𝑣 𝑏 (𝑣)) [10].

3 EXPERIMENTS AND RESULTS
We compare our policies with other 3 policies: RP is the random
policy for the baseline; RFP is the risk-first policy which prioritizes
arms with the worst beliefs; WIP is the Whittle Index Policy with-
out our MDP encoding; TCB is the time-constrained RMAB polices
without minimum constraints; IP is the integer programming pol-
icy to fulfill minimum action constraints. We generate synthetic
transitions and windows for all MDPs and run in 60 timestamps.
The total reward improvement compared with RP in percentage is
shown in Table 2, and coverage constraints are checked in Table 1.
The TCB and IP can improve the total rewards by as much as 20%.
What’s more, IP lookahead substantially increases coverage with-
out sacrificing rewards. Once the budget is high enough to make
the problem feasible, full coverage is satisfied.

4 CONCLUSION
To the best of our knowledge, we present the first RMAB study
to optimize scheduling problems under timing and frequency con-
straints. Synthetic data results suggest that our methods for ex-
plicitly modeling constraints are critical for RMABs to have an
impact in this setting. We hope our work paves the way for apply-
ing RMABs to other critical infrastructure maintenance and public
service problems under constraints.
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