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ABSTRACT
Prior work on path-based sensors has assumed that each agent’s
path is determined before the agent departs and cannot be changed
mid-trip. We consider how an agent might adjust its path in re-
sponse to new information that it gathers en route. Mid-trip path
adjustment is non-trivial because it can increase the number of lo-
cations at which a missing agent may have been destroyed (from an
external observer’s point-of-view). We solve this issue by employ-
ing backtracking as a particular form of mid-trip path adjustment
that avoids the issue of additional potential destruction locations.
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1 INTRODUCTION
Autonomous robots have been used to gather information in a vari-
ety of environments using all kinds of sensors. In some applications,
we get a binary ‘yes’ or ‘no’ to the question of whether an event has
occurred along the agent’s path; however, when we get a ‘yes,’ we
do not know where along the path the event occurred. This binary
observation along a path is known as a “path-based sensor” [10].

We consider a a goal of finding the locations of both agent-
destroying hazards and search and rescue targets in a communica-
tion denied environment. Searching for the hazards can be modeled
as a path-based sensor because agents are unable to communicate
the locations of their destruction to an outside observer. The targets
can be located using a standard sensor (such as a camera). Because
the environment is communication-denied, an agent’s sensor read-
ings about targets are lost if it is destroyed. This presents a dilemma.
If the agent has accumulated valuable information but faces a high
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risk of future destruction, then it can be beneficial to deviate for
a safer route. However, if we simply allow the agent to take the
safest path back to base, then when an agent is destroyed the set
of possible destruction locations expands to include every cell that
could be part of some potential deviation back to the base. This
would significantly dilute information gain and make the hazard
belief update computationally intractable.

We propose a variant on the path-based sensor strategy that mit-
igates this issue by enabling agents to return to their starting point
by reversing along their current path instead of completing the path
to the goal (Fig. 1). Backtracking offers a balance between safety,
informational value, and efficiency: the agent has just survived the
sub-path it intends to use; it does not dilute the information gain;
and it supports the use of computationally efficient update rules.

2 RELATEDWORK
The concept of a path-based sensor is introduced in [10] and ex-
tended in [13]. The current paper differs from [10, 13] by allowing
agents to adjust their paths mid-trip based on new information
that is gathered en route. Our work differs from previous work
[1–9, 11, 12, 14, 15] in that we consider a zero-communication sce-
nario with multiple stationary hazards and targets where we cannot
observe the locations where hazards destroy our agents.

3 ALGORITHM
The problem we are trying to solve has three parts:
a. Given an environment and beliefs about hazards and targets,

find the path that maximizes the expected information gain.
b. Given a partially-executed plan, determine if backtracking will

increase the expected information gain. (Alg. 1 line 3.)
c. Given a completed path or an agent disappearance along a

planned path, update the belief map. (Alg. 1 lines 4-11.)

Algorithm 1 iterativeInfoGathering(X,Z)
Input: Prior target beliefs X and hazard beliefs Z
Output: Iterative sequence of paths, and updates to X and Z

1: for 𝑟 = 1, 2, . . . do
2: 𝜁 ← calculatePath(X,Z)
3: PathResult← tryToTraversePath(𝜁 ,X,Z)
4: if PathResult = died then
5: Z← KilledOnPathUpdate(Z)
6: else if PathResult = completed then
7: X← BayesianCellUpdates(X,Y𝜁 )
8: Z← BayesianCellUpdates(Z, [0, . . . , 0])
9: else if PathResult = backtracked then
10: X← X′

11: Z← Z′

12: return X,Z

Base
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Base
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Figure 1: An agent back-
tracks and removes loops,
improving safety.
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Figure 2: The difference in entropy
remaining (top) and agents lost (bot-
tom) when using backtracking ver-
sus the baseline algorithm. Dark
and light squares indicate when the
baseline or backtracking has better
performance, respectively. Different
(large) columns correspond to differ-
ent numbers of targets and hazards.
Large rows show performance after
different numbers of paths. Within
each heat-map: small columns corre-
spond to hazard belief priors and the
small rows correspond to backtrack-
ing bias . Backtracking tends to per-
form better and better over time.
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Entropy Remaining, Environment 4
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Prior work focused on (a) and (c).We explore (b), showing that
allowing backtracking decreases the number of agents de-
stroyed and often improves the rate of information gain. We
combine our method for (b) with existing solutions for (a) and (c).

The algorithm to find the locations of the hazards and targets
is an iterative approach that plans a path for each agent based on
the current hazard and target belief states, sends the agent along
the path, and updates the belief states based on whether the agent
survived as well as its target sensor observations if it did (see Alg. 1).

At each cell along its path, an agent checks for a target and
then decides whether to backtrack or continue on its path based
on which has a higher expected information gain. Let 𝑐 represent
continuing forward, 𝑏 represent backtracking, 𝑑 represent agent
destruction, and 𝐼 represent information gained. Furthermore, let:

(1) P(𝑑 |𝑐): probability of destruction if agent continues.
(2) E(𝐼 |𝑑): expected info if agent is destroyed.
(3) E(𝐼 |¬𝑑 ∧ 𝑐): expected info if agent survives continuing.
(4) P(𝑑 |𝑏): probability of destruction if agent backtracks.
(5) E(𝐼 |¬𝑑 ∧ 𝑏): expected info if agent survives backtrack.

This gives E(𝐼 |𝑐) = P(𝑑 |𝑐)E(𝐼 |𝑑) + (1 − P(𝑑 |𝑐))E(𝐼 |¬𝑑 ∧ 𝑐) and
E(𝐼 |𝑏) = P(𝑑 |𝑏)E(𝐼 |𝑑) + (1 − P(𝑑 |𝑏))E(𝐼 |¬𝑑 ∧ 𝑏). The agent back-
tracks if E(𝐼 |𝑏) > (𝑏𝑖𝑎𝑠)E(𝐼 |𝑐).

E(𝐼 |𝑑) is the same whether or not the agent backtracks, and
has already been calculated during the path planning. To compute
P(𝑑 |𝑐), we start with the probability of surviving the entire path,
which is the product of the probabilities of surviving each cell.
The probability of surviving a given cell is ((1 − 𝒁 [𝑐]) + 𝒁 [𝑐] (1 −
lethality)) (1 −malfunction) where 𝒁 [𝑐] is the hazard prior for cell
𝑐 . Then after each cell the agent survives, we update this probability
based on the fact that the remaining path is one cell shorter.

Given our assumption of cell independence, the expected infor-
mation gained during the backtrack is the sum of the expected
information gained in each cell. E(𝐼 |¬𝑑 ∧ 𝑏) is found by adding the
expected information that will be gained during the backtrack to
the information already gained along the forward path.

When an agent survives a path, it necessarily survived every cell
along that path. So, in the case of agent survival, hazard belief up-
dates are achieved using a standard bayesian update independently

for each cell visit. Similarly, target beliefs are updated independently
for each target sensor reading obtained along the path.

When an agent is destroyed on a path, however, we do not know
where it was destroyed. We can use our priors to calculate the
probability that the agent was destroyed in each cell. Then for each
possible location, we use standard bayesian updates to calculate
the posterior probabilities that would result if we knew the agent
had been destroyed in that location. Finally, we take the weighted
average of those possibilities to compute our combined posterior.

4 EXPERIMENTS AND CONCLUSIONS
We run simulations to test how the algorithm performs in the four
environments shown in Fig. 3. We compare allowing backtracking
to the baseline (non-backtracking) algorithm, and evaluate how
performance is affected by the number of targets and hazards, the
hazard lethality rate, the bias in favor of (or against) backtracking,
and the prior probability of hazards or targets assumed in each cell.

Our experiments show that backtracking resulted in fewer agent
losses than the baseline algorithm in nearly all trials — 20% fewer
agents lost in most cases, with up to 40% fewer agents lost in some
cases (Fig. 2). We observe that backtracking converges to low en-
tropy faster than the baseline in some cases. In the larger environ-
ments, the backtracking algorithm starts off gathering information
more slowly than the baseline method, but then catches up and out-
performs the baseline method as more agents are deployed. Overall,
backtracking algorithm appears to be an improvement over the
baseline algorithm when a large number of paths (approximately
100-200) can be run, or when losing fewer agents is a priority.
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Figure 3:
Maps for ex-
periments.
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