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ABSTRACT
In zero-sum games, the optimal strategy is well-defined by the
Nash equilibrium. However, it is overly conservative when playing
against suboptimal opponents and it can not exploit their weak-
nesses. Limited look-ahead game solving in imperfect-information
games allows superhuman play in massive real-world games such
as Poker, Liar’s Dice, and Scotland Yard. However, since they ap-
proximate Nash equilibrium, they tend to only win slightly against
weak opponents. We propose theoretically sound methods combin-
ing limited look-ahead solving with an opponent model, in order
to 1) approximate a best response in large games or 2) compute a
robust response with control over the robustness of the response.
Both methods can compute the response in real time to previously
unseen strategies. We present theoretical guarantees of our meth-
ods. We show that existing robust response methods do not work
combined with limited look-ahead solving of the shelf, and we
propose a novel solution for the issue. Our algorithm performs
significantly better than multiple baselines in smaller games and
outperforms state-of-the-art methods against SlumBot.
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1 INTRODUCTION [14]
Adapting to suboptimal opponents can significantly improve our
winnings, even in zero-sum games. There is substantial work on
modeling and adapting to opponents both in theory [2, 6, 8, 12, 13,
16, 18] and also applied in real-world [1, 4].

However, the current methods are limited by the size of the
game and need the game to fit in the memory. Decomposition is
a key method to solve games too large to fit in the memory [3].
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An algorithm successfully applying decomposition in imperfect-
information games is the continual resolving [15]. Here, we extend
it to exploit opponents effectively.

We create algorithms to both fully exploit known opponents
and exploit known opponents while staying robust to worst-case
adversaries. We call the methods continual depth-limited best re-
sponse (CDBR) and continual depth-limited restricted Nash re-
sponse (CDRNR). We prove the theoretical properties of the algo-
rithms and show that CDBR exploits SlumBot significantly more
than the previous state-of-the-art. Furthermore, CDRNR can exploit
opponents more than previous state-of-the-art and has stronger
properties in balancing robustness and exploitation.

2 FULLY EXPLOITING THE OPPONENT
CDBR is an algorithm that focuses on fully exploiting the opponent.
We need a value function since it is based on continual resolving
[9, 15]. This value function summarizes what will happen in the
future parts of the game. To compute the exact best response, we
would need to capture the opponent’s strategy in the value function,
resulting in a need for a separate value function for any possible
opponent. We use a single optimal value function to avoid this,
assuming both players continue optimally. We fix the opponent
in the look-ahead part of the game we have in the memory and
compute the strategy against it using the optimal value function.
We show both theoretical results showing we will get at least the
value of the game and also strong empirical performance.

3 SAFE MODEL EXPLOITATION
While CDBR maximizes the exploitation of the fixed opponent
model, it allows the player to be exploited if the opponent deviates
from the assumed strategy.

Combination of CDBR and Nash Equilibrium
The combination of CDBR and Nash equilibrium (CDBR-NE) is
the first approach to limit exploitability. We can simultaneously
compute both strategies using depth-limited solving and do a linear
combination in every decision node. The gain and exploitability of
the resulting linear combination is then a linear combination of the
gain and exploitability of the combined strategies. We can achieve
the desired exploitability or gain by tuning the parameter of the
linear combination, and the algorithm is only two times slower than
the CDBR since we need to find the Nash equilibrium separately
and perform CDBR. The required value function is the same for
both parts and is still the same as in standard continual resolving.
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Continual Depth-limited RNR
CDBR-NE is safe, but [7] shows we can get a much better trade-off
between gain and exploitability using RNR as it recovers the optimal
Pareto set of 𝜖-safe best responses [11]. RNR gives us better safety
control by linking the allowed exploitability to the achieved gain.
We combine depth-limited solving with RNR to create CDRNR.

Description of Restricted Nash Response. For CDRNR, we first need
to explain the RNR method briefly [7]. RNR begins with an initial
chance action with two outcomes, where the likelihood of the
outcomes determines the robustness parameter. We copy the whole
game after both of the outcomes. The player computing the RNR
can not observe which outcome was chosen. In one part of the
game, the opponent is fixed; in the other, it behaves rationally.

Continual Depth-limited Restricted Nash Response. The first prob-
lem of CDRNR is the value function. At the depth-limit, we have a
differently sized vector for the value function. However, the struc-
ture of the value function can stay the same as in the continual
resolving. When we apply it, we need to combine the opponent’s
strategies from the fixed and rational responses and re-weight the
results. The second problem is the robustness. Continual resolving
uses a gadget, an addition to the top of the game [3]. This modifica-
tion ensures the robustness of the strategy. Our fundamental result
is that previously used gadgets all fail with suboptimal opponents,
and the minimal working gadget is what we call a full gadget. The
full gadget keeps all the histories from the root to the current part
of the game and uses the value function to evaluate the branches to
other parts. We show that we always achieve at least value of the
game against the chosen opponent. We also show a bound on the
exploitability, which we connect directly to what we obtain from
the chosen opponent. We also beat the previous method and are
close to the RNR, the perfect response for a given parameter.

Exploitability of Robust Responses
We report both gain and exploitability for CDRNR on LeducHold’em.
Results in Figure 1 show that the proven bound on exploitability
works in practice and is very loose. For example, with 𝑝 = 0.5,
the bound on the exploitability is the gain itself, but the algorithm
rarely reaches even a tenth of the gain in exploitability. Hence, the
CDRNR, similarly to RNR, can significantly exploit the opponent
without significantly raising its exploitability with a well set 𝑝 .

We compare against the best possible Nash equilibrium com-
puted by a linear program. It is the theoretical limit of maximal
gain, which does not allow exploitability. We can see we can gain
over twice as much, with exploitability still almost zero. Safe ex-
ploitation search (SES) is a previous method that only uses fixed
opponent reaches. It also uses the standard gadget, which can not
give strong guarantees [10].

Playing SlumBot
We tested our method in HUNL against SlumBot [5], which is a
publicly available abstraction-based bot commonly used for bench-
marking. We used a fold, call, pot, and all-in (FCPA) abstraction
for CDBR. CDBR significantly outperforms ABR and LBR, and we
report the results in Table 1. Authors in [17] also use FCPA for their
method but did not report a confidence interval for the results.
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Figure 1: Gain and exploitability of BR, RNR, best Nash equi-
librium (BNE), CDBR-NE, SES, and CDRNR in Leduc Hold’em
against CFR strategies with a small number of iterations with
different 𝑝 values. The a represents the average of the other
values. VF is CDRNR using an imperfect value function.

ABR LBR CDBR
Win-rate [mbb/h] 1259 ± ? 1388 ± 150 1774 ± 137

Table 1: Comparison of CDBR with LBR and ABR against
SlumBot. Results are reported in milibigblinds per hand
(mbb/h) with 95% confidence intervals. (Authors of ABR did
not report a confidence interval.)

4 CONCLUSION
Wepropose new algorithms to compute responses in large imperfect-
information games, creating the best performing theoretically sound
robust response applicable to games that require decomposition.
We empirically evaluate the algorithms on multiple games. We
show that CDBR outperforms LBR in both Leduc and HUNL, and
we show that CDBR performs significantly better against SlumBot
than any other previous method. Finally, we show that CDRNR
outperforms SES in any game and can achieve over half the possible
gain without almost any exploitability.
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