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ABSTRACT
The ability to learn robust policies while generalizing over large
discrete action spaces is an open challenge for intelligent systems,
especially in noisy environments that face the curse of dimensional-
ity. In this paper, we present a novel framework to efficiently learn
action embeddings that simultaneously allow us to reconstruct the
original action as well as to predict the expected future state. We de-
scribe an encoder-decoder architecture for action embeddings with
a dual channel loss that balances between action reconstruction and
state prediction accuracy.We use the trained decoder in conjunction
with a standard reinforcement learning algorithm that produces
actions in the embedding space. Our architecture is able to outper-
form two competitive baselines in two diverse environments: a 2D
maze environment with more than 4000 discrete noisy actions, and
a product recommendation task that uses real-world e-commerce
transaction data. Empirical results show that the model results in
cleaner action embeddings, and the improved representations help
learn better policies with earlier convergence.
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1 INTRODUCTION
Reinforcement learning (RL) has had significant recent success in
applications such as games and robotics [7, 10]. However, real-world
problems that involve a large number of discrete action choices
are still very challenging for traditional RL algorithms. Examples
include scenarios such as recommendation systems [1], supply
chains [9], complex high fidelity games [2, 13] resource manage-
ment at scale in data centers [5, 8], investment management [6],
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where large action spaces are handled indirectly using pre- or post-
processing heuristics. The key challenge is with exploring large
action spaces sufficiently well to arrive at optimal policies. Further-
more, hand-crafted heuristics for mapping RL outputs to actions
become intractable as the number of actions increases.

Recently, the success of state embeddings for complex state
spaces has inspired studies on the use of action embeddings along
similar lines [4]. The key idea is to learn the RL policy not over
raw actions, but over action representations in a low dimensional
embedding space. If actions with similar effects are grouped close
together in the embedding space, the efficiency of exploration is
greatly improved. It stands to reason that the better the action
representations, the better the chance of reaching good policies.

In this paper, we present an architecture to efficiently learn action
embeddings in low dimensional space. We force the embeddings to
be rich by imposing the dual task of learning the effect of actions
as well as predicting future states. We show experimentally that
this helps the RL agents learn better policies in scenarios with large
action spaces. We build upon work of Chandak et al. [3] and Pritz
et al. [11] and provide a generalized framework for learning embed-
dings which is not only efficient in encoding transition dynamics
between states but also helps in decoding those actions (Fig. 1).

The main contributions of our work are as follows:
• Wepropose a new architecture for an action encoder-decoder
model which results in a better representation of action em-
beddings by jointly training encoder and decoder for action
reconstruction and next state prediction.

• We present extensive experimentation over a noisy maze
environment with up to 212 unique actuator actions to val-
idate our model and compare it with previous work and a
traditional off policy RL algorithm (DQN).

• We also demonstrate the effectiveness of our algorithm in
recommender systems, outperforming baselines on a real-
world fashion e-commerce dataset.

2 METHODOLOGY
In this section, we propose a model to efficiently learn action em-
beddings using an encoder-decoder architecture with Dual Channel
Training (DCT). We focus on the explanation of action embeddings
𝐸𝑡 from Fig. 1, but an analogous method1 can be used to train state
embeddings 𝑋𝑡 . Following this step, we can use any off-the-shelf
model-free RL algorithm to train the internal policy 𝜋𝑖 .

1For state embeddings, we only use the gradient from the next-state prediction loss
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(a) Chandak et. al. [3] (b) Pritz et. al. [11] (c) Proposed Architecture

Figure 1: Comparison with prior work. The proposed Dual Channel Training (DCT) architecture improves learnt embeddings
𝐸𝑡 with a significant effect on the rate and quality of policy learning, as shown in this paper.

We use DDPG [12] for most experiments in this paper. The
encoder-decoder model is jointly trained using DCT, with loss
gradients flowing through both 𝑓 and 𝑔. The generic loss function
is given by,

L = 𝐿1 (𝑔(𝑋𝑡 , 𝐸𝑡 ), 𝑆𝑡+1)︸                 ︷︷                 ︸
prediction loss

−𝜂 × 1
𝑁

× log 𝑃 (𝐴𝑡 |𝑓 , 𝐸𝑡 )︸                    ︷︷                    ︸
reconstruction loss

, (1)

where 𝐿1 is a metric to measure the state prediction loss, 𝑁 is the
number of actions, and 𝑃 (𝐴𝑡 |𝑓 , 𝐸𝑡 ) is the softmax probability of de-
coding the embedding 𝐸𝑡 to the correct action 𝐴𝑡 , as parameterised
by 𝑓 .The multiplier 𝜂 is a hyperparameter used for trading off the
importance between the two loss terms. Complete details can be
found in the paper 2

3 RESULTS: NAVIATION IN 2D MAZE
We present results on a 2-D Maze environment, which an agent
with a number of directional actuators is expected to navigate.

3.1 Training Results
Figure 2 presents the training results for 211 actions (11 actuators).
We can observe that DCT outperforms all the other baseline algo-
rithms, converging earlier and reaching a higher reward.

Figure 2: Training results for 211 actions: DCT in blue, JSAE
in red, PG-RA in grey, and DQN in yellow. Averages over 10
random seeds.
2https://arxiv.org/pdf/2306.15913.pdf

Table 1 presents results over various actions. We can see that
even with just 500 episodes (Fig. 2), DDPG over DCT embeddings
is able to learn consistently across the actions.

Table 1: Traning results over various actions from 26 to 212.

26 210 212
𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

DQN 97.38 4.05 -22.03 12.24 -25.92 4.79
PG-RA 97.46 0.46 45.91 65.31 73.15 53.31
JSAE 98.76 0.33 82.25 39.05 90.04 27.02
DCT 72.69 54.03 98.39 1.09 99.15 0.15

4 RESULTS: RECOMMENDER SYSTEMS
We present results from a recommender system task as a second
experiment aiming to suggest meaningful products that result in
actual purchases for the user.

4.1 Baselines and RL training

Figure 3: Training curves for the proposedmethod (DCT) and
two baselines, over 5 random seeds.

5 CONCLUSION
Finally, we can conclude from the experiments that DCT is able
to learn across a different number of actions consistently. This is
validated across 2 diverse environment of navigation and recom-
mender systems. As a part of the investigation, we have also looked
at how loss coefficient 𝜂 affect the structure of embedding.
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