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ABSTRACT
Sequential decision-making is challenging in non-stationary en-

vironments, where the environment in which an agent operates

can change over time. Policies learned before execution become

stale when the environment changes, and relearning takes time and

computational effort. Online search, on the other hand, can return

sub-optimal actions when there are limitations on allowed run-

time. In this paper, we introduce Policy-Augmented Monte Carlo tree
search (PA-MCTS), which combines action-value estimates from

an out-of-date policy with an online search using an up-to-date

model of the environment. We prove several theoretical results

about PA-MCTS. We also compare and contrast our approach with

AlphaZero, another hybrid planning approach, and Deep Q Learn-

ing on several OpenAI Gym environments and show that PA-MCTS

outperforms these baselines.
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1 INTRODUCTION
Sequential decision-making is present in many important problem

domains, such as autonomous driving [2], emergency response [7],
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and medical diagnosis [1]. An open challenge in such settings is

non-stationary environments, where the dynamics of the environ-

ment can change over time. A decision agent must adapt to these

changes to avoid taking sub-optimal actions. Reinforcement learn-

ing (RL), especially with deep neural networks, struggles in such

settings due to quickly outdated policies and the high cost of re-

training [4, 8], while Monte Carlo tree search (MCTS) offers quicker

adaptation but faces challenges with slow convergence in complex

situations. This can be especially problematic in time-sensitive con-

texts [9], leading to potentially delayed responses [5]. In this work,

we present a novel hybrid decision-making approach called Policy-

Augmented Monte Carlo tree search (PA-MCTS), which combines

a policy’s action-value estimates with the returns generated by

MCTS without changing either of the two approaches, i.e., the com-

bination occurs entirely outside the online search tree. We argue

that a hybrid decision-making approach that integrates RL and

online planning can combine their strengths while mitigating their

weaknesses in non-stationary environments. The intuition is that

if the environment has not changed too much between when an

optimal policy was learned and when a decision needs to be made,

the policy can still provide useful information for decision-making.

We also show how existing hybrid approaches, e.g., AlphaZero, can

also be used for decision-making in non-stationary environments.

2 MARKOV DECISION PROCESSES IN
NON-STATIONARY SETTINGS

Our focus is on scenarios where it’s impractical to immediately

learn a new policy after changes in the environment are detected,

aiming to optimize decision-making during the transition to learn-

ing a new, nearly optimal policy. We explore this through the lens

of non-stationary Markov decision processes (NSMDP), which in-

troduce a temporal dimension to stationary MDPs and assume

changes in the transition function are smoothly bounded [6]. Rec-

ognizing that some changes can be abrupt and significant, we pro-

pose a variant called transition-bounded non-stationary Markov

decision processes (T-NSMDP), which limits the overall shift in
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Environment Setting DDQN MCTS AlphaZero PA-MCTS

Cartpole

(varying 𝑔)

g = 9.8 2500.0 ± 0.0 846.456±43.228 2403.261±35.946 2500.0±0.0
g = 20 2500.0±0.0 918.022±46.554 2278.90±52.9 2500.0±0.0
g = 50 22.061±0.729 778.511±44.90 1920.261±78.547 2500.0±0.0
g = 500 7.083±0.126 111.578±17.705 626.178±80.091 954.656±90.150

Frozen Lake

[1.000, 1.000, 1.000] 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0±0.0
[0.833, 0.083, 0.083] 0.830 ± 0.012 0.806 ± 0.012 0.809±0.013 0.830±0.012
[0.633, 0.183, 0.183] 0.522 ± 0.016 0.56 ± 0.017 0.523±0.017 0.587±0.016
[0.433, 0.283, 0.283] 0.26 ± 0.014 0.764 ± 0.013 0.235±0.014 0.796±0.013
[0.333, 0.333, 0.333] 0.12 ± 0.01 0.866 ± 0.01 0.114±0.011 0.936±0.009

Table 1: Results for all four environments with varying levels of non-stationarity. For each environment, the degree of change
increases from top to bottom. We observe PA-MCTS comprehensively outperforms baseline approaches, including AlphaZero.

transition probabilities between the initial learning phase and exe-

cution, to better manage the adaptability of decision-making pro-

cesses in dynamic environments. Consider the transition prob-

ability function 𝑃𝑡 (𝑠′ | 𝑠, 𝑎), where the subscript 𝑡 denotes the

time step under consideration. Now, consider that the environment

undergoes some change between time steps 0 and 𝑡 . We assume

that: ∀𝑠, 𝑎 :

∑
𝑠′∈𝑆 |𝑃𝑡 (𝑠′ | 𝑎, 𝑠) − 𝑃0 (𝑠′ | 𝑎, 𝑠) | ≤ 𝜂 where 𝑡 ∈ T

(i.e., some point in time after the original policy was learned), and

𝜂 ∈ R+ is a scalar bound. Although our algorithm only tackles

discrete changes for now, our problem definition is agnostic to

whether the change is continuous or discrete.

Our key hypothesis is that with small changes in the transition

function, the Q function under an optimal policy does not change

much, i.e., “good” actions remain valuable, and “bad” actions do

not suddenly become promising. we show that the change in Q is

bounded with respect to the change in 𝑃 :

Theorem 2.1. If ∀𝑠, 𝑎 : ∑
𝑠′∈𝑆 |𝑃𝑡 (𝑠′ | 𝑎, 𝑠) − 𝑃0 (𝑠′ | 𝑎, 𝑠) | ≤ 𝜂,

and∀𝑠, 𝑎 : |𝑟 (𝑠, 𝑎) | ≤ 𝑅, and the discount factor𝛾 < 1, then |𝑄𝜋∗
0

0
(𝑠, 𝑎)−

𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎) | ≤ 𝜖 ∀𝑠, 𝑎, where 𝜖 =
𝛾 ·𝜂 ·𝑅
(1−𝛾 )2 (The proof is presented in the

arXiv version).1

The objective is to identify optimal actions at time t, maximiz-

ing future rewards under certain conditions: an initial optimal

action-value function 𝑄
𝜋∗
0

0
(𝑠, 𝑎) learned under different conditions,

bounded changes in transition probabilities by 𝜂; an up-to-date

black-box simulator for the current environment, and constrained

computational resources preventing the learning of a new optimal

policy at execution time.

3 POLICY AUGMENTED MONTE CARO TREE
SEARCH

Policy-Augmented Monte Carlo Tree Search (PA-MCTS) integrates

an online search with 𝑄-values learned on the environment at

an earlier decision epoch, even if the environment has changed.

Rather than selecting an action based on the highest expected return

estimated by the online search, PA-MCTS instead chooses the action

that maximizes a convex combination of the previously learned

𝑄-values and the MCTS estimates 𝐺 :

argmax

𝑎∈A𝑠

𝛼𝑄
𝜋∗
0

0
(𝑠, 𝑎) + (1 − 𝛼)𝐺𝑡 (𝑠, 𝑎) (1)

1
arXiv version: https://arxiv.org/abs/2401.03197

where 𝑄
𝜋∗
0

0
(𝑠, 𝑎) is the optimal

2 𝑄-function previously learned by

the decision agent. The hyper-parameter 𝛼 , set between 0 and

1, moderates the balance between learned 𝑄-values and MCTS-

derived expected returns, aiming to find a middle ground between

low-variance, biased𝑄
𝜋∗
0

0
estimates and high-variance, unbiased𝐺𝑡

estimates. Below, we quantify the total error in the expected return

using PA-MCTS compared to an optimal (updated) policy.

Theorem 3.1. When PA-MCTS is used for sequential decision
making, the maximum difference between the return from an optimal
policy and the return from following PA-MCTS is at most 2(𝛼𝜖−𝛼𝛿+𝛿 )

1−𝛾 .
(The proof is presented in the arxiv version).

4 EXPERIMENTS
Our approach is tested using four OpenAI Gym environments: Cart

Pole, Frozen Lake, Cliff Walking, and Lunar Lander [3]. In Cart

Pole, we introduce non-stationarity by varying the gravitational

constant and the pole’s mass. For Frozen Lake and Cliff Walking,

non-stationarity is simulated by adding probabilities for unintended

movements. In Lunar Lander, wind is introduced as a non-stationary

factor, requiring the agent to adapt its actions to wind force.

Results for partial environments and settings we use to induce

non-stationarity are presented in Table 1. The complete results are

presented in the arXiv version. Our implementation is available

at https://github.com/scope-lab-vu/PAMCTS. We observe as

the change in the environment increases, the performance of the

DDQN policy in isolation degrades as hypothesized. Second, we

observe that PA-MCTS converges significantly faster than standard

MCTS (with appropriate 𝛼). Third, in most environment settings,

PA-MCTS outperforms Alphazero, Standard MCTS and DDQN.
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2
In principle, we do not require the optimal𝑄-function. As shown in the experiments,

an approximation also works well in practice.

Extended Abstract  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2418



REFERENCES
[1] Turgay Ayer, Oguzhan Alagoz, and Natasha K Stout. 2012. OR Forum—A POMDP

approach to personalize mammography screening decisions. Operations Research
60, 5 (2012), 1019–1034.

[2] Maxime Bouton, Alireza Nakhaei, Kikuo Fujimura, andMykel J Kochenderfer. 2019.

Safe reinforcement learning with scene decomposition for navigating complex

urban environments. In 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 1469–
1476.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. arXiv preprint
arXiv:1606.01540 (2016).

[4] Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. 2019. Non-stationary

reinforcement learning: The blessing of (more) optimism. Available at SSRN
3397818 (2019).

[5] Mykel J Kochenderfer, Tim A Wheeler, and Kyle H Wray. 2022. Algorithms for
decision making. MIT Press.

[6] Erwan Lecarpentier and Emmanuel Rachelson. 2019. Non-stationary Markov deci-

sion processes, a worst-case approach using model-based reinforcement learning.

Advances in Neural Information Processing Systems 32 (2019), 7216–7225.
[7] Ayan Mukhopadhyay, Geoffrey Pettet, Chinmaya Samal, Abhishek Dubey, and

Yevgeniy Vorobeychik. 2019. An online decision-theoretic pipeline for responder

dispatch. In ACM/IEEE International Conference on Cyber-Physical Systems. 185–
196.

[8] Ronald Ortner, Pratik Gajane, and Peter Auer. 2020. Variational regret bounds for

reinforcement learning. In 35th Uncertainty in Artificial Intelligence Conference,
Vol. 115. 81–90.

[9] Geoffrey Pettet, AyanMukhopadhyay,Mykel J. Kochenderfer, andAbhishekDubey.

2021. Hierarchical Planning for Dynamic Resource Allocation in Smart and

Connected Communities. ACM Transactions on Cyber-Physical Systems (2021).
arXiv:2107.01292 [cs.MA]

Extended Abstract  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2419

https://arxiv.org/abs/2107.01292

	Abstract
	1 Introduction
	2 Markov Decision Processes in Non-Stationary Settings
	3 Policy Augmented Monte Caro Tree Search
	4 Experiments
	Acknowledgments
	References



