
Psychophysiological Models of Cognitive States Can Be
Operator-Agnostic

Extended Abstract

Erin E. Richardson
University of Colorado Boulder

Boulder, United States
erin.richardson@colorado.edu

Savannah L. Buchner
University of Colorado Boulder

Boulder, United States
savannah.buchner@colorado.edu

Jacob R. Kintz
University of Colorado Boulder

Boulder, United States
jacob.kintz@colorado.edu

Torin K. Clark
University of Colorado Boulder

Boulder, United States
torin.clark@colorado.edu

Allison P. Anderson
University of Colorado Boulder

Boulder, United States
allison.p.anderson@colorado.edu

ABSTRACT
Real-time prediction of a person’s trust (T), mental workload (W),
and situation awareness (SA) can improve safety and performance
in operational environments. We develop psychophysiological mod-
els of TWSA both with and without operator-specific demographic
information available to them and we assess the impact of this
constraint on the models’ performance. We demonstrate functional
model fit (Adjusted 𝑅2: T = 0.67, W = 0.65, and SA = 0.88) and
predictive ability with operator-agnostic models, assessed via leave-
one-participant-out cross validation (𝑄2: T = 0.58, W = 0.45, and
SA = 0.79). Our findings help establish the viability of operator-
agnostic psychophysiological models of TWSAwhich could be used
to inform an autonomous agent or manage multi-agent teams.
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1 INTRODUCTION
Operational environments, such as spaceflight, often require hu-
mans to team with multiple agents, which may include other hu-
mans and autonomous systems. In future complex operational en-
vironments, the ability to model and predict an operator’s trust (T),
mental workload (W), and situation awareness (SA), collectively
“TWSA”, can facilitate improved safety and performance [11].

Current methods of measuring or predicting TWSA are insuffi-
cient for operational environments. Administering questionnaires
requires interrupting an operator’s task and behavioral and task-
based measures are often specific to a given task, and thus lose
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applicability with changes to the tasks or protocols. Psychophysio-
logical measures, however, do not require interrupting an operator’s
work and do not explicitly rely on task-specific elements. As a re-
sult, predictive models of TWSA based on psychophysiological
measures may show robustness to moderate changes in tasks or
protocol as well as utility across different tasks. Predictive mod-
els would provide additional utility if they were accurate across
users. Collecting demographic information may be impractical in
time-constrained situations [15, 18]. Furthermore, necessitating
collection of demographic data may decrease a tool’s acceptability,
especially where an operator’s performance affects their career
[3, 4]. Since identifiable information facilitates mapping of data to
individuals, avoiding collection of operator-specific information
may help to decrease privacy risk and improve tool acceptability.

We explore the implications of excluding operator-specific infor-
mation on modeling TWSA. We build psychophysiological models
of operator TWSA in a supervisory task where participants work
alongside a simulated autonomous system. We improve on prior
work that relies on proxy measures by using validated question-
naires as the target variables in predicting TWSA. Our predictive
modeling approach improves upon classification techniques by
modeling TWSA as continuous constructs via multiple regression.
We perform feature shrinkage to reduce our feature set and stability
selection to reduce variability in feature selection. Finally, we use
internal cross-validation to assess model predictive accuracy. We
hypothesized that model performance would decrease with less
information available, but that operator-agnostic models would still
demonstrate viability for use in predicting operator TWSA.

2 METHODS
This study was approved by the University of Colorado’s Institu-
tional Review Board. Twelve people participated in the study but
data from two of them were excluded due to technical issues during
data collection. Data from the remaining ten participants (6M/4F,
age 25 ±7 [19-42]) were used in our analysis.

Participants worked in a supervisory role alongside a simulated
autonomous system to maintain a modeled deep space habitat en-
vironmental control and life support system (ECLSS) described in
detail in [8]. Each participant was trained on the task and com-
pleted practice trials. Before starting the experiment, participants
completed a demographic questionnaire, the Automation-Induced
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Table 1: Performance of TWSA models

Model Description 𝑁predictors
Adjusted

𝑅2
LOPO
𝑄2

LOTO
𝑄2

Specific 29 0.71 0.54 0.63
T Agnostic 25 0.67 0.58 0.61

Specific 25 0.66 0.48 0.56
W Agnostic 24 0.65 0.45 0.54

Specific 29 0.90 0.79 0.87
SA Agnostic 29 0.88 0.79 0.81

Complacency Potential (AICP) rating scale, and the 3-minute Psy-
chomotor Vigilance Test (PVT) [1, 10]. Participants wore a 3-lead
electrocardiogram montage, a BIOPAC respiratory chest belt, elec-
trodermal activity electrodes on two fingers, and Pupil Labs’ Pupil
Core eye-tracking headset [6]. Baseline physiological signals were
recorded for 20 seconds before each trial while participants sat still
and visually fixated on a crosshair. Each participant completed 15
trials that were 50-95 seconds long. Throughout the trials, scripted
events presented anomalies in the ECLSS and the autonomous
system suggested actions in response. The autonomous system
randomly transitioned between different modes of operation across
trials by altering transparency and decision authority [8]. Partici-
pants self-reported their TWSA via subjective questionnaires after
each trial; Jian et al.’s scale, a modified version of the Bedford Work-
load scale, and the “10D” Situational Awareness Rating Technique
were used to measure TWSA, respectively [5, 13, 14, 16].

Predictive models of TWSA were built using the subjective ques-
tionnaire scores as the ground truth. Features were extracted from
the physiological data and the demographic questionnaires. First-
order interaction terms were also generated. We divided the po-
tential predictors into two subsets: operator-specific and operator-
agnostic. Operator-specific predictors include the demographic
questionnaire responses, AICP scores, and PVT scores while the
operator-agnostic features do not. Sets of predictors were down-
selected from the subset of potential predictors for each model.
10-fold cross validation relaxed LASSO was used to identify two
sets of predictors by: 1) setting the shrinkage coefficient, 𝜆, at the
one standard error (1-SE) location and 2) setting 𝜆 at the minimum
mean squared error location [2, 17]. This was repeated 50 times,
resulting in 100 sets of predictors. Next, any terms that appeared
in any of the 100 sets were used in a subsequent run of LASSO
with 𝜆 at the 1-SE location. This was repeated 50 times, resulting
in 50 more sets of predictors. This stability selection aims to ad-
dress the instability in predictor sets resulting from cross-validation
embedded in the LASSO method [9]. Ordinary least squares was
used to fit coefficients to each unique set of predictors output by
LASSO, generating a set of model options. Two forms of exhaus-
tive cross-validation were performed to assess each model option:
leave-one-participant-out (LOPO) and leave-one-trial-out (LOTO),
generating LOPO and LOTO 𝑄2s [12]. It should be noted that in
both cross-validation measures, the left-out participant/trial was
not left out of the feature selection process, such that the final model
features remained the same while the fitted coefficients differed
with each left-out prediction. All of the trials were used to fit the

final coefficients and calculate the adjusted 𝑅2 values. To further
protect against overfitting, we constrained models to contain no
more predictors than 1/5 of the number of observations. We also
constrained models to have 𝑄2s within 0.2 of the adjusted 𝑅2, as
disparity in these values is indicative of overfitting. The final model
was the one which achieved the highest adjusted 𝑅2 while satisfy-
ing these constraints. This process was conducted for both feature
subsets for each of TWSA.

3 RESULTS
The model performances are summarized in Table 1. Overall, limit-
ing TWSA models to operator-agnostic features did not substan-
tially decrease performance. The largest drop in adjusted 𝑅2 was
0.04 for the trust model. Critically, the operator-agnostic models
still performed well when predicting the TWSA of participants
whose data were not used to fit their coefficients, as indicated by
their LOPO 𝑄2s of 0.58, 0.45, and 0.79. This result is important as
we aim to build models that can generalize to new operators.

4 DISCUSSION
Across all three cognitive states, the operator-agnostic models
demonstrated predictive relevance. These models’ basis in psy-
chophysiological signals rather than task-specific information and
operator-specific information further affirm their utility for pre-
dicting TWSA in operational environments. Previous work found
trust and workload model performance to greatly decrease with-
out demographic predictors [7]. These models, however, did not
have physiological measures available to them and only used task-
embedded measures. In our study, the exclusion of operator-specific
predictors resulted in only small drops in performance.

Going forward, data should be collected from larger sample sizes
and from real field operators. Our cross-validation is limited in that
the test data sets were not left out of the predictor selection process,
giving rise to the potential for internal validation bias. More subjects
would allow for separate train and test datasets, mitigating internal
validation bias. Our ongoing work further addresses this limitation
by including feature selection in the cross-validation process.

5 CONCLUSION
This work demonstrates a viable pathway for operator-agnostic
prediction of TWSA using psychophysiological data. We fit mod-
els derived from psychophysiological data to gold-standard ques-
tionnaire scores of TWSA. TWSA models that were not privy to
operator-specific demographic information achieved good fit (ad-
justed 𝑅2s of 0.67, 0.65, and 0.88) and predictive ability (LOPO 𝑄2s
of 0.58, 0.45, and 0.79). Furthermore, the models do not interrupt
users’ actions and do not rely on operationally-cumbersome demo-
graphic questionnaires. They could be used in a variety of settings,
such as to inform the behavior of adaptive autonomous systems
or to allocate resources in a team of operators, thereby improving
performance and safety of human-autonomy teams and of humans
working in operational environments.

ACKNOWLEDGMENTS
This work was supported by NASA STRI 80NSSC19K1052.

Extended Abstract  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2439



REFERENCES
[1] Mathias Basner, Adam Savitt, Tyler Moore, Allison Port, Sarah McGuire, Adrian

Ecker, Jad Nasrini, Daniel Mollicone, Christopher Mott, Thom McCann, David
Dinges, and Ruben Gur. 2015. Development and Validation of the Cognition Test
Battery for Spaceflight. Aerospace Medicine and Human Performance 86 (Nov.
2015), 942–952. https://doi.org/10.3357/AMHP.4343.2015

[2] Savannah L. Buchner. 2022. Multimodal Feature Selection to Unobtrusively Model
Trust, Workload, and Situation Awareness. Master’s thesis. University of Colorado
at Boulder, United States – Colorado. https://www.proquest.com/docview/
2681067437/abstract/FB66870A43AA40A0PQ/1

[3] Cherrylyn Buenaflor, Hee-Cheol Kim, and S. Korea. 2013. Six Human Factors
to Acceptability of Wearable Computers. https://www.semanticscholar.
org/paper/Six-Human-Factors-to-Acceptability-of-Wearable-Buenaflor-
Kim/3ae7835e1270d4d60bf011532c07ad979437a671

[4] Byungjoo Choi, Sungjoo Hwang, and SangHyun Lee. 2017. What drives construc-
tion workers’ acceptance of wearable technologies in the workplace?: Indoor
localization and wearable health devices for occupational safety and health. Au-
tomation in Construction 84 (Dec. 2017), 31–41. https://doi.org/10.1016/j.autcon.
2017.08.005

[5] Jiun-Yin Jian, Ann Bisantz, and Colin Drury. 2000. Foundations for an Empir-
ically Determined Scale of Trust in Automated Systems. International Jour-
nal of Cognitive Ergonomics 4 (March 2000), 53–71. https://doi.org/10.1207/
S15327566IJCE0401_04

[6] Moritz Kassner, William Patera, and Andreas Bulling. 2014. Pupil: an open
source platform for pervasive eye tracking and mobile gaze-based interaction.
In Proceedings of the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing: Adjunct Publication (UbiComp ’14 Adjunct). Association
for Computing Machinery, New York, NY, USA, 1151–1160. https://doi.org/10.
1145/2638728.2641695

[7] Jacob R. Kintz, Neil T. Banerjee, Johnny Y. Zhang, Allison P. Anderson, and
Torin K. Clark. 2023. Estimation of Subjectively Reported Trust, Mental Workload,
and Situation Awareness Using Unobtrusive Measures. Human Factors 65, 6 (Sept.
2023), 1142–1160. https://doi.org/10.1177/00187208221129371

[8] Jacob R. Kintz, Young-Young Shen, Savannah L. Buchner, Allison P. Anderson,
and Torin K. Clark. 2023. A Simulated Air Revitalization Task to Investigate
Remote Operator Human-Autonomy Teaming With Communication Latency. In
52nd International Conference on Environmental Systems. https://ttu-ir.tdl.org/
handle/2346/94539

[9] Nicolai Meinshausen and Peter Bühlmann. 2010. Stability selection. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 72, 4 (2010), 417–473.
https://doi.org/10.1111/j.1467-9868.2010.00740.x

[10] Stephanie M. Merritt, Alicia Ako-Brew, William J. Bryant, Amy Staley, Michael
McKenna, Austin Leone, and Lei Shirase. 2019. Automation-Induced Compla-
cency Potential: Development and Validation of a New Scale. Frontiers in Psychol-
ogy 10 (2019). https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00225

[11] Raja Parasuraman, Thomas Sheridan, and Christopher Wickens. 2008. Situa-
tion Awareness, Mental Workload, and Trust in Automation: Viable, Empiri-
cally Supported Cognitive Engineering Constructs. Journal of Cognitive Engi-
neering and Decision Making 2 (July 2008), 140–160. https://doi.org/10.1518/
155534308X284417

[12] Nguyen T. Quan. 1988. The Prediction Sum of Squares as a General Measure
for Regression Diagnostics. Journal of Business & Economic Statistics 6 (1988),
501–504. https://doi.org/10.2307/1391469

[13] A. H. Roscoe. 1984. Assessing Pilot Workload in Flight. Technical Report. ROYAL
AEROSPACE ESTABLISHMENT BEDFORD. https://apps.dtic.mil/sti/citations/
ADP004109

[14] A. H. Roscoe and G. A. Ellis. 1990. A Subjective Rating Scale for As-
sessing Pilot Workload in Flight: A decade of Practical Use. Technical
Report. ROYAL AEROSPACE ESTABLISHMENT FARNBOROUGH. https:
//www.semanticscholar.org/paper/A-Subjective-Rating-Scale-for-Assessing-
Pilot-in-A-Roscoe-Ellis/fcb2e3627e7ca07101ac1d1ad6e0f79e1c23f5c2

[15] Mark R. Rosekind, R. Curtis Graeber, David F. Dinges, Linda J. Connell, Michael S.
Rountree, Cheryl L. Spinweber, and Kelly A. Gillen. 1994. Crew factors in flight
operations 9: Effects of planned cockpit rest on crew performance and alertness in
long-haul operations. Technical Report DOT/FAA/92/24. https://ntrs.nasa.gov/
citations/19950006379

[16] R. M. Taylor. 1990. Situational Awareness Rating Technique (SART): The Develop-
ment of a Tool for Aircrew Systems Design. In Situational Awareness in Aerospace
Operations (AGARD-CP-478). NATO - AGARD, Neuilly Sur Seine, France.

[17] Robert Tibshirani. 1996. Regression Shrinkage and Selection Via the Lasso.
Journal of the Royal Statistical Society: Series B (Methodological) 58, 1 (1996),
267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

[18] Danni Tu,Mathias Basner,Michael G. Smith, E. SpencerWilliams, Valerie E. Ryder,
Amelia A. Romoser, Adrian Ecker, Daniel Aeschbach, Alexander C. Stahn, Christo-
pher W. Jones, Kia Howard, Marc Kaizi-Lutu, David F. Dinges, and Haochang
Shou. 2022. Dynamic ensemble prediction of cognitive performance in spaceflight.
Scientific Reports 12 (June 2022). https://doi.org/10.1038/s41598-022-14456-8

Extended Abstract  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2440

https://doi.org/10.3357/AMHP.4343.2015
https://www.proquest.com/docview/2681067437/abstract/FB66870A43AA40A0PQ/1
https://www.proquest.com/docview/2681067437/abstract/FB66870A43AA40A0PQ/1
https://www.semanticscholar.org/paper/Six-Human-Factors-to-Acceptability-of-Wearable-Buenaflor-Kim/3ae7835e1270d4d60bf011532c07ad979437a671
https://www.semanticscholar.org/paper/Six-Human-Factors-to-Acceptability-of-Wearable-Buenaflor-Kim/3ae7835e1270d4d60bf011532c07ad979437a671
https://www.semanticscholar.org/paper/Six-Human-Factors-to-Acceptability-of-Wearable-Buenaflor-Kim/3ae7835e1270d4d60bf011532c07ad979437a671
https://doi.org/10.1016/j.autcon.2017.08.005
https://doi.org/10.1016/j.autcon.2017.08.005
https://doi.org/10.1207/S15327566IJCE0401_04
https://doi.org/10.1207/S15327566IJCE0401_04
https://doi.org/10.1145/2638728.2641695
https://doi.org/10.1145/2638728.2641695
https://doi.org/10.1177/00187208221129371
https://ttu-ir.tdl.org/handle/2346/94539
https://ttu-ir.tdl.org/handle/2346/94539
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00225
https://doi.org/10.1518/155534308X284417
https://doi.org/10.1518/155534308X284417
https://doi.org/10.2307/1391469
https://apps.dtic.mil/sti/citations/ADP004109
https://apps.dtic.mil/sti/citations/ADP004109
https://www.semanticscholar.org/paper/A-Subjective-Rating-Scale-for-Assessing-Pilot-in-A-Roscoe-Ellis/fcb2e3627e7ca07101ac1d1ad6e0f79e1c23f5c2
https://www.semanticscholar.org/paper/A-Subjective-Rating-Scale-for-Assessing-Pilot-in-A-Roscoe-Ellis/fcb2e3627e7ca07101ac1d1ad6e0f79e1c23f5c2
https://www.semanticscholar.org/paper/A-Subjective-Rating-Scale-for-Assessing-Pilot-in-A-Roscoe-Ellis/fcb2e3627e7ca07101ac1d1ad6e0f79e1c23f5c2
https://ntrs.nasa.gov/citations/19950006379
https://ntrs.nasa.gov/citations/19950006379
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1038/s41598-022-14456-8

	Abstract
	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	5 Conclusion
	Acknowledgments
	References



