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ABSTRACT
We study the classic problem of dividing a collection of indivisi-

ble resources in a fair and efficient manner among a set of agents

having varied preferences. Pareto optimality is a standard notion of

economic efficiency, which states that it should be impossible to find

an allocation that improves some agent’s utility without reducing

any other’s. On the other hand, a fundamental notion of fairness in

resource allocation settings is that of envy-freeness, which renders

an allocation to be fair if every agent (weakly) prefers her own

bundle over that of any other agent’s bundle. Unfortunately, an

envy-free allocation may not exist if we wish to divide a collection

of indivisible items. Introducing randomness is a typical way of

circumventing the non-existence of solutions, and therefore, alloca-
tion lotteries, i.e., distributions over allocations have been explored

while relaxing the notion of fairness to ex-ante envy freeness.

We consider a general fair division setting with 𝑛 agents and

a family of admissible 𝑛-partitions of an underlying set of items.

Every agent is endowed with partition-based utilities, which specify

her cardinal utility for each bundle of items in every admissible

partition. In such fair division instances, Cole and Tao (2021) have

proved that an ex-ante envy-free and Pareto-optimal allocation

lottery is always guaranteed to exist. We strengthen their result

while examining the computational complexity of the above total

problem and establish its membership in the complexity class PPAD.

Furthermore, for instances with a constant number of agents, we

develop a polynomial-time algorithm to find an ex-ante envy-free

and Pareto-optimal allocation lottery. On the negative side, we

prove that maximizing social welfare over ex-ante envy-free and

Pareto-optimal allocation lotteries is NP-hard.
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1 INTRODUCTION
Fairly dividing a collection of resources among individuals (often

dubbed as agents) with varied preferences forms a key concern in
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the design of many social institutions. Such problems arise naturally

in many real-world scenarios such as assigning computational re-

sources in a cloud computing environment, air traffic management,

dividing business assets, allocation of radio and television spectrum,

course assignments, and so on [2, 26, 36, 44]. The fundamental prob-

lem of fair division lies at the interface of economics, social science,

mathematics, and computer science, and its formal study dates back

about seven decades [24, 39]. In the last few decades, the area of fair

division has witnessed a flourishing flow of research; see [3, 10, 11]

for excellent expositions.

Traditionally, in early literature, fair division has been studied

for a single divisible resource, classically known as fair cake cutting.
Here, each agent specifies her valuations over a unit interval cake

via a probability distribution over [0, 1] and the problem is to divide

the cake among agents in a fair manner. The quintessential notion

of fairness in this line of work is that of envy-freeness, introduced
by Foley [29] and Varian [42]. A cake division is said to be envy-free
if every agent prefers her own share of the cake over any other

agent’s share. Stromquist [40] famously proved that an envy-free

cake division (where every agent receives a connected interval of

the cake) is always guaranteed to exist, under mild conditions. Later,

Su [41] developed another existential proof using Sperner’s Lemma

and established a connection between the notion of envy-freeness

and topology. Such strong existential results have arguably placed

the notion of envy-freeness as the flagship bearer of fairness in

resource allocation settings.

On the other hand, Pareto optimality is a standard notion of

economic efficiency, which states that it should be impossible to find

an allocation that improves some agent’s utility without reducing

any other’s. Another important notion of (collective) efficiency

measure of an allocation is that of social welfare [36] which is the

sum of all the utilities derived by agents from their assigned bundle.

The goal of being fair towards the participating agents and

achieving collective (economic) efficiency form the two important

paradigms of resource allocation problems. Unfortunately, for an

indivisible set of items, an envy-free allocation may not exist. For

example, an instance with two agents having positive value for a

single item admits no envy-free allocation.

A fair division instance consists of a set [𝑛] = {1, 2 . . . , 𝑛} of 𝑛
agents and a set𝑀 of items. In the most basic setting, every agent

𝑖 has an additive utility function 𝑢𝑖 : 2
𝑀 → R that specifies her

cardinal preferences for the items of a given bundle; in particular,

𝑢𝑖 ( 𝑗) B 𝑢𝑖 ({ 𝑗}) denotes agent 𝑖’s utility for item 𝑗 ∈ 𝑀 . We say an

allocation is a partition of items into 𝑛 bundles, where every agent is

assigned one bundle. The goal of simultaneously achieving fairness

and efficiency is challenging for the problem of allocating indivisible

items. Besides the mentioned fact that an envy-free allocation is not
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guaranteed to exist, in cases where envy-free allocations do exist,

envy-freeness may not be compatible with Pareto optimality [9].

The above discussion suggests that one should consider distri-

butions over allocations (to be referred as allocation lotteries) in
order to simultaneously achieve fairness and efficiency guaran-

tees. In the random assignment literature in economics, the idea

of constructing a fractional allocation and implementing it as a

lottery over deterministic allocations was introduced by Hylland

and Zeckhauser [31]. Introducing randomness is a typical way of

circumventing the non-existence of various solution concepts, es-

pecially in computational social choice theory [1, 6, 14, 23]. In the

process of exploring allocation lotteries, we appropriately relax the

notion of fairness to ex-ante envy-freeness, which values the ran-

dom bundles allocated agents in terms of expected utility. Recent

works of [7, 13, 16, 30] deal with various computational aspects

of allocation lotteries that are fair and efficient for fair division

instances with additive utilities. Observe that, allocation lotteries

that are just ex-ante envy-free or just ex-ante Pareto-optimal can

be trivially computed in polynomial time. For the former, one can

solve a linear program, while for the latter, one can assign each

bundle to the agent that has the highest utility for it. That is, these

notions of fairness and efficiency are tractable if dealt with indi-

vidually. Therefore, the important question is to understand the

computational complexity of computing allocation lotteries that

are simultaneously ex-ante envy-free and Pareto-optimal. In this

work, we consider this question for the most general setting of fair

division, as detailed in the following section.

Context and Overview of Results. In this work, we consider

a very general fair division setting with 𝑛 agents and a family of

admissible 𝑛-partitions of an underlying set of items. Every agent

is endowed with partition-based utilities that specify her cardinal

utility for different bundles in every partition. For such a broad class

of fair division instances with partition-based utilities, including

negative-valued utilities, the recent work of Cole and Tao [22]

proves that an ex-ante envy-free and Pareto-optimal allocation

lottery is always guaranteed to exist.

Note that, partition-based utilities provide a much broader way

of expressing agents’ utilities. In particular, it is possible that an

agent may value the exact same bundle of items in two distinct

partitions at two different values or, there may be a certain partition

of items that is not favourable or suitable (depending on the context

of application). This generalization allows us to remove unsuitable

partitions from the family of admissible partitions, and still, the ex-

istence of ex-ante envy-free and Pareto optimal allocation lotteries

is guaranteed.

In this work, we examine the computational complexity of the

above total search problem and strengthen the work of Cole and

Tao [22]. In particular, we establish that the problem of finding an ex-

ante envy-free and Pareto optimal allocation lottery for fair division

instances with partition-based utilities belongs to the complexity

class PPAD. This containment result is even interesting for the

special case of a single admissible partition. Namely, our PPAD

membership result is for the exact search problem, of computing

a rational valued lottery. This can be contrasted with the lottery

provided by the Hylland-Zeckhauser (HZ) pseudo-market. Vazirani

and Yannakakis [43] gave a simple example with four agents and

four goods where the unique HZ equilibrium gives an irrational-

valued lottery. This fact means that any algorithm for computing a

HZ equilibrium exactly must overcome numerical challenges. Our

result on the other hand gives hope for the possibility of developing

a practical algorithm for computing an exact ex-ante envy-free and

Pareto optimal allocation lottery, for instance by an adaptation of

Lemke’s algorithm [34].

For instances with a constant number of agents, we develop

a polynomial-time algorithm to compute an exact ex-ante envy-

free and Pareto-optimal lottery. On the negative side, we prove

that maximizing social welfare over ex-ante envy-free and Pareto

optimal allocation lotteries is NP-hard.

Further Related Work. Fairness in resource-allocation settings is

extensively studied in the economics, mathematics, and computer

science literature (see [10, 11, 36]). As mentioned above, envy-free

allocations may not exist for the case of indivisible items. Since

envy-freeness is arguably a fundamental notion of fairness, as ev-

ident from its importance in fair cake cutting, there has been a

significant body of research aimed towards finding ex-ante envy-

free allocation lotteries in the indivisible setting. The work of Free-

man et al. [30] addresses the key question of whether ex-ante envy-

freeness can be achieved in combination with ex-post envy-freeness
up to one item. They settle it positively by designing an efficient

algorithm that achieves both properties simultaneously. Caragian-

nis et al. [16] explore the interim allocation lotteries (iEF) which
provide fairness guarantees that lie between ex-post and ex-ante

envy-freeness. They develop polynomial-time algorithms for com-

puting iEF lotteries that maximize various efficiency notions.

Budish et al. [13] employ a general class of random allocation

mechanisms to achieve ex-ante fairness and efficiency in the pres-

ence of real-world constraints. Several other works explore fairness

and efficiency guarantees of allocation lotteries as well, but for

ordinal utilities [1, 8, 21].

Another line of research has explored various relaxations of

envy-freeness. The notion of envy-freeness up to one item (EF1) was
introduced by Budish et al. [12] as one of the first ‘good’ relaxations

of envy-freeness in the indivisible setting. We say an allocation is

EF1 when every agent (weakly) prefers her own bundle over any

other agent 𝑗 ’s bundle after removing some item from 𝑗 ’s bundle.

EF1 allocations are guaranteed to always exist for general mono-

tone valuations and can be computed efficiently [35]. Moreover,

this fairness notion is compatible with the economic efficiency ob-

jective of Pareto-optimality [17]. Later, envy-freeness up to any item
(EFX) was introduced by Caragiannis et al. [17] as a refinement of

EF1 and is now considered as the most compelling fairness crite-

rion while dividing indivisible items. We say an allocation is EFX

when every agent (weakly) prefers her own bundle than any other

agent 𝑗 ’s bundle after removing her least positively-valued item

from 𝑗 ’s bundle. Recent works [4, 5, 18, 19] have shown existential

guarantees for EFX in various special cases.

2 THE MODEL
Consider a set [𝑛] = {1, 2, . . . , 𝑛} of 𝑛 agents and a collection

P = {𝑃1, 𝑃2, . . . , 𝑃𝑚} of admissible partitions of a set 𝑀 of items.

Every partition 𝑃𝑘 for 𝑘 ∈ [𝑚] consists of 𝑛 bundles, i.e., |𝑃𝑘 | = 𝑛
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and the union of those bundles is

⋃
𝐴∈𝑃𝑘 𝐴 ⊆ 𝑀 . Agents are en-

dowed with utility functions 𝑢𝑖 ’s that specify their cardinal pref-

erences for all bundles in every different partition. In particular,

the function 𝑢𝑘
𝑖 𝑗
specifies partition-based cardinal utilities of agent

𝑖 ∈ [𝑛] for the 𝑗th bundle (for 𝑗 ∈ [𝑛]) in partition 𝑃𝑘 ∈ P. It is

important to note that an agent with partition-based utilities can

have different utilities for the exact same bundle, occurring in two

distinct partitions. We will denote a fair division instance by the

tuple I = ⟨[𝑛],P, {𝑢𝑘
𝑖 𝑗
}𝑖, 𝑗 ∈[𝑛],𝑘∈[𝑚]⟩.

For a given fair division instance, we define an allocation to be an
assignment of the 𝑛 bundles of a partition in P to the agents, such

that every agent receives exactly one bundle. We assume that for

any partition, the set of (admissible) allocations is specified by the𝑛!

permutations of 𝑛 bundles among 𝑛 agents, and that the utility of an

agent depends only on the partition and the bundle received and not

to whom the remaining bundles are given. We refer to this property

of a fair division instance as the anonymity property. Therefore,
we have a total of𝑚 · 𝑛! many distinct admissible allocations in a

given fair division instance. Furthermore, in a given fair division

instance, we define a lottery to be a probability distribution over

these allocations.

The overarching goal is to find a fair and efficient lottery among

agents from the given set of admissible partitions. As mentioned,

Cole and Tao [22] established the existence of fair and efficient

lotteries for fair division instances with the anonymity property

using Kakutani’s fixed-point theorem [32]. Since there are a total

of𝑚 ·𝑛!many allocations, one can specify probabilities with which

every allocation occurs in a lottery. This leads to a very conve-

nient but also very inefficient way of representing a lottery via an

exponential-dimensional vector (𝑝1, 𝑝2, . . . , 𝑝𝑚 ·𝑛!), where 𝑝𝑖 repre-
sents the probability with which the 𝑖-th allocation is chosen. This

representation was used by Cole and Tao [22] for their proof of ex-

istence, but it is clearly not suitable for studying the computational

aspects of finding lotteries. Instead, we will represent a lottery in

the following manner: Let p = {𝑝𝑘 }𝑘∈[𝑚] , where 𝑝𝑘 ∈ [0, 1] de-
notes the probability with which partition 𝑃𝑘 ∈ P is selected in

a lottery. The vector q = {𝑞𝑘
𝑖 𝑗
}𝑖, 𝑗 ∈[𝑛],𝑘∈[𝑚] of length𝑚 · 𝑛2 then

specifies the full lottery, where 𝑞𝑘
𝑖 𝑗
is the probability with which

the lottery q assigns the 𝑗 th bundle in partition 𝑃𝑘 to agent 𝑖 ∈ [𝑛].
The vectors p and q are characterized by the following constraints.

𝑛∑︁
𝑖=1

𝑞𝑘𝑖 𝑗 = 𝑝𝑘 for all 𝑗 ∈ [𝑛], 𝑘 ∈ [𝑚]

𝑛∑︁
𝑗=1

𝑞𝑘𝑖 𝑗 = 𝑝𝑘 for all 𝑖 ∈ [𝑛], 𝑘 ∈ [𝑚]

and,

𝑚∑︁
𝑘=1

𝑝𝑘 = 1

The constraints express that every bundle is assigned to one agent

and that every agent receives one bundle, respectively. We can now

express the expected utility, E[𝑢𝑖 (q)], for agent 𝑖 ∈ [𝑛] in a lottery

q as

E[𝑢𝑖 (q)] B
𝑚∑︁
𝑘=1

𝑛∑︁
𝑗=1

𝑢𝑘𝑖 𝑗 · 𝑞
𝑘
𝑖 𝑗 .

More generally, let

𝑢𝑖 (q; 𝑖 ′) B
𝑚∑︁
𝑘=1

𝑛∑︁
𝑗=1

𝑢𝑘𝑖 𝑗 · 𝑞
𝑘
𝑖′ 𝑗

denote the expected utility of agent 𝑖 for the bundle of agent 𝑖 ′ in
the lottery q. Observe that, we have 𝑢𝑖 (q; 𝑖) = E[𝑢𝑖 (q)] for any
agent 𝑖 ∈ [𝑛].

Let us now define the standard notions of fairness and optimality

in resource allocation settings. A lottery q is said to be ex-ante envy-
free if 𝑢𝑖 (q; 𝑖) ≥ 𝑢𝑖 (q; 𝑖 ′) holds for all 𝑖, 𝑖 ′ ∈ [𝑛]. Furthermore, we

say that q is ex-ante Pareto-optimal if there does not exist any other

lottery q̃ such that 𝑢𝑖 (q̃; 𝑖) ≥ 𝑢𝑖 (q; 𝑖) holds for all 𝑖 ∈ [𝑛], with a

strict inequality for at least one agent 𝑖 ∈ [𝑛]. Social welfare is a
standard notion of measuring the collective welfare of an allocation.

We define social welfare of a lottery q as the sum of the expected

utilities of all agents, i.e., SW(q) = ∑
𝑖∈[𝑛] 𝑢𝑖 (q; 𝑖).

3 PPAD-MEMBERSHIP
In this section, we show that the problem of finding an exact ex-

ante envy-free and Pareto-optimal lottery in a given fair division

instance belongs to the class PPAD. Our proof is based on (i) a

significant simplification of the existence proof of Cole and Tao

[22], (ii) a characterization of PPAD in terms of computing fixed

points of piecewise linear arithmetic circuits due to Etessami and

Yannakakis [25] (i.e. PPAD = Linear-FIXP), and (iii) a framework

for proving FIXP and PPAD-membership via convex optimization

recently developed by Filos-Ratsikas et al. [27, 28]. Formally, we

obtain the following theorem.

Theorem 3.1. The problem of finding an ex-ante envy-free and
Pareto-optimal lottery in a fair division instance belongs to PPAD.

It is possible to adapt the existence proof of Cole and Tao (by

changing to our succinct representation of lotteries) to obtain a

proof of FIXP membership using the framework of Filos-Ratsi-

kas et al [27]. The proof of Cole and Tao employs Kakutani’s fixed

point theorem to a correspondence defined on pairs consisting a lot-

tery q and a vector of positive weights w ∈𝑊Y for the agents, from

a closed set𝑊Y . This correspondence maps (q,w) to pairs (q′,w′)
such that q′ is a lottery maximizing the weighted sum of utilities

of the agents and where w′
is obtained from w by translating each

coordinate by a nonlinear function of the lottery q followed by a

projection to the set𝑊Y .

Themaximization of theweighted sum of utilitiesmay be phrased

as a linear program and the projection may be phrased as a convex

quadratic program.While both of these fall in the scope of the frame-

work of Filos-Ratsikas et al. [28] for proving PPAD-membership,

the nonlinear transformation involved cannot be computed be a

piecewise linear arithmetic circuit.

Our simplified proof involves only optimization of a linear pro-

gram and the solution of a feasibility program with conditional

linear constraints, together with operations computable by linear

arithmetic circuits. In this case the framework Filos-Ratsikas et al.

applies to give PPAD-membership [28].

Another framework for proving PPAD-membership was also

recently introduced by Papadimitriou, Vlatakis-Gkaragkounis and

Zampetakis [38]. With this framework, however, it would only be
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possible to directly prove PPAD-membership for an approximate
version of the problem, rather than the exact problem.

In the remainder of this section, we let I = ⟨[𝑛],P, {𝑢𝑘
𝑖 𝑗
}𝑖, 𝑗,𝑘 ⟩

denote a fair division instance with 𝑛 agents and𝑚 = |P | partitions,
where the utilities 𝑢𝑘

𝑖 𝑗
are given as rational numbers.

3.1 Fixed Point Formulation
We first present our fixed point formulation for ex-ante envy-free

and Pareto-optimal lotteries; afterwards we consider the implica-

tions for the computational complexity of the problem.

A standard technique for expressing the Pareto frontier of an op-

timization problem, also employed by Cole and Tao, is the weighted
sum method [45]. Let 𝑤1, . . . ,𝑤𝑛 > 0 be strictly positive weights.

Then, any lottery q maximizing the weighted sum of utilities∑𝑛
𝑖=1𝑤𝑖𝑢𝑖 (q; 𝑖) must be Pareto-optimal. Conversely, if q is a Pareto-

optimal lottery, there are strictly positive weights such that q maxi-

mizes the weighted sum of utilities.

The task of maximizing the weighted sum of utilities can be

expressed by the following linear program with decision variables

𝑞𝑘
𝑖 𝑗
and 𝑝𝑘 , and parameterized by the variables𝑤𝑖 .

max

𝑛∑
𝑖=1

𝑤𝑖

𝑚∑
𝑘=1

𝑛∑
𝑗=1

𝑢𝑘
𝑖 𝑗
𝑞𝑘
𝑖 𝑗

s.t.

𝑛∑
𝑖=1

𝑞𝑘
𝑖 𝑗

= 𝑝𝑘 for all 𝑗 ∈ [𝑛], 𝑘 ∈ [𝑚]
𝑛∑
𝑗=1

𝑞𝑘
𝑖 𝑗

= 𝑝𝑘 for all 𝑖 ∈ [𝑛], 𝑘 ∈ [𝑚]
𝑚∑
𝑘=1

𝑝𝑘 = 1

𝑝𝑘 ≥ 0 for all 𝑘 ∈ [𝑚]
𝑞𝑘
𝑖 𝑗

≥ 0 for all 𝑖, 𝑗 ∈ [𝑛], 𝑘 ∈ [𝑚]

(1)

The proof of Cole and Tao [22] shows the existence of positive

weights such that any lottery q maximizing the corresponding

weighted sum of utilities is also ex-ante envy-free.

We next define the following key quantity 0 < 𝜌 ≤ 1

2
and state

Lemma 3.3 (proved in [22]) that will be used to place restrictions of

weights.

Definition 3.2. Let 𝐽 = {(𝑘, 𝑙, ℎ, 𝑎, 𝑏) ∈ [𝑚] × [𝑛]4 | 𝑢𝑘
𝑙𝑎

<

𝑢𝑘
𝑙𝑏

and 𝑢𝑘
ℎ𝑎

< 𝑢𝑘
ℎ𝑏

}. We define 𝜌 as follows,

𝜌 =

{
1

2
min(𝑘,𝑙,ℎ,𝑎,𝑏) ∈𝐽 (𝑢𝑘𝑙𝑏 − 𝑢𝑘

𝑙𝑎
)/(𝑢𝑘

ℎ𝑏
− 𝑢𝑘

ℎ𝑎
) if 𝐽 ≠ ∅

1

2
otherwise

Lemma 3.3 (cf. [22, Claim 4.13]). Suppose that (q, p) is an optimal
solution of LP (1). If 0 < 𝑤ℎ ≤ 𝜌𝑤𝑙 it follows that 𝑢𝑙 (q; 𝑙) ≥ 𝑢𝑙 (q;ℎ)
(i.e. that agent 𝑙 does not envy agent ℎ).

Define Y = 𝜌𝑛/𝑛 and let𝑊Y = {𝑤 ∈ R𝑛 : ∑𝑛
𝑖=1𝑤𝑖 = 1 and𝑤𝑖 ≥

Y ∀ 𝑖 ∈ [𝑛]}. We shall restrict the weights to belong to𝑊Y , which

in particular, ensure that they are strictly positive. We consider the

following feasibility problem with conditional linear constraints

having decision variables𝑤𝑖 , and parameterized by variables 𝑞𝑘
𝑖 𝑗
.

[𝑢𝑙 (q;ℎ) − 𝑢𝑙 (q; 𝑙) > 0] ⇒ [𝑤ℎ − 𝜌𝑤𝑙 ≤ 0] 𝑙, ℎ ∈ [𝑛]
𝑛∑
𝑖=1

𝑤𝑖 = 1

𝑤𝑖 ≥ Y 𝑖 ∈ [𝑛]
(2)

Here, the conditional constraint [𝑢𝑙 (q;ℎ) − 𝑢𝑙 (q; 𝑙) > 0] ⇒
[𝑤ℎ − 𝜌𝑤𝑙 ≤ 0] is satisfied if either 𝑢𝑙 (q;ℎ) − 𝑢𝑙 (q; 𝑙) ≤ 0 or

𝑤ℎ − 𝜌𝑤𝑙 ≤ 0. In words, whenever agent 𝑙 envies agent ℎ in the

lottery 𝑞, a solution w of the system must satisfy 0 < 𝑤ℎ ≤ 𝜌𝑤𝑙 ,

which is precisely the antecedent stated in Lemma 3.3. We can think

of the feasibility problem as a system of inequalities in variables w,

some of which may be “disabled” by inequalities expressed in the

variables q.
In order to characterize the solvability of this feasibility pro-

gram, it is convenient to introduce the envy graph of the lottery q.
Filos-Ratsikas et al. [28] consider feasibility programs as above in a

general form and characterizes their solvability in terms of a feasi-
bility graph. In our case, this feasibility graph is exactly the same

as the envy graph defined next.

Definition 3.4 (Envy graph). For a given lottery q, denote by

G(q) the envy graph with nodes [𝑛] and an arc (𝑙, ℎ) whenever
𝑢𝑙 (q; 𝑙) < 𝑢𝑙 (q;ℎ), for all 𝑙, ℎ ∈ [𝑛]. We let 𝐴(G(q)) denote the set
of arcs of G(q).

We can then precisely characterize the solvability of the feasibil-

ity problem (2) by the graph structure of G(q).

Lemma 3.5. Suppose that q is a lottery such that G(q) is acyclic.
Then the feasibility program (2) is solvable.

Proof. First note that the condition 𝑢𝑙 (q;ℎ) − 𝑢𝑙 (q; 𝑙) > 0 is

satisfied precisely when (𝑙, ℎ) ∈ 𝐴(G(q)). Thus we are to find

weights𝑤𝑖 such that𝑤ℎ ≤ 𝜌𝑤𝑙 , whenever (𝑙, ℎ) ∈ 𝐴(G(q)).
For 𝑖 ∈ [𝑛], let 𝑑𝑖 denote the length of a longest path in G(q)

from node 𝑖 to a sink node, and define

𝑤𝑖 =
𝜌𝑑𝑖∑𝑛
𝑗=1 𝜌

𝑑 𝑗
for all 𝑖 ∈ [𝑛] .

Clearly

∑𝑛
𝑖=1𝑤𝑖 = 1, and since𝑑𝑖 ≤ 𝑛 and 𝜌 ≤ 1we also have𝑤𝑖 ≥ Y.

Suppose now that (𝑙, ℎ) ∈ 𝐴(G(q)). This means that 𝑑𝑙 ≥ 𝑑ℎ + 1

and thus also𝑤𝑙 ≤ 𝜌𝑤ℎ . In conclusion, we have that the weights

𝑤𝑖 are a solution to the feasibility program (2). □

We can note that acyclicity of G(q) is also necessary for the

solvability of the feasibility program (2), since the inequalities𝑤𝑙 ≤
𝜌𝑤ℎ given by the arcs (𝑙, ℎ) of a cycle in G(q) are contradictory.
But note also that if G(q) contains a cycle, all agents in the cycle

will increase their utility if the lottery is shifted along the cycle. We

thus have the following simple but crucial observation.

Observation 3.6 (cf. [22, Claim 4.8]). If q is Pareto-optimal, the
envy graph G(q) is acyclic.

We can now conclude with the following fixed-point formulation,

showing that a pair (q,w) that is simultaneously solving the linear

program (1) and the feasibility problem (2) give an ex-ante envy-free

and Pareto-optimal lottery.

Proposition 3.7. Suppose q is a lottery andw ∈𝑊Y are weights such
that q is an optimal solution of the linear program LP (1) w.r.t. the
weightsw, andw is a solution of the feasibility program of conditional
linear constraints (2) with conditions given by q (note that the system is
in fact solvable by the optimality of q, Observation 3.6 and Lemma 3.5).
Then q is an ex-ante envy-free and Pareto-optimal lottery.
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Proof. Since the weights w are strictly positive and q is an

optimal solution of LP (1) it follows that q is Pareto-optimal. Suppose

now for contradiction that there exists agents 𝑙 andℎ such that agent

𝑙 envies agent ℎ, that is, 𝑢𝑙 (q;ℎ) > 𝑢𝑙 (q; 𝑙). Since w is a solution to

the system (2) with conditions given by q given it follows that𝑤ℎ ≤
𝜌𝑤𝑙 . But then Lemma 3.3 gives𝑢𝑙 (q;ℎ) ≤ 𝑢𝑙 (q; 𝑙), contradicting the
assumption. It follows that q must also be ex-ante envy-free. □

3.2 PPAD, FIXP, and Linear-FIXP
The complexity class PPAD was originally defined in seminal work

of Papadimitriou [37] as the class of total NP search problems re-

ducible to a concrete problem called End-Of-Line. As mentioned

above, to obtain result, we shall instead make use of a characteriza-

tion of PPAD in terms of computation of fixed points of functions

computed by piecewise linear arithmetic circuits. Below we briefly

introduce this characterization and refer to [25] for further details.

An arithmetic circuit is a circuit 𝐶 with gates computing binary

operations belonging to the set {+,−, ∗,÷,max,min} together with
rational constants. The size of 𝐶 refers to the size of an encoding

of 𝐶 . A piecewise linear arithmetic circuit 𝐶 restricts the allowable

binary operations to the set {+,−,max,min}, but allows also for

multiplication by rational constants.

The class FIXP consists of (real-valued) search problems that

reduce to finding a fixed point of a function 𝐹 : 𝐷 → 𝐷 , where 𝐷 is

an explicitly given convex polytope and 𝐹 is a function computable

by an algebraic circuit. By Brouwer’s fixed point theorem such a

fixed point is guaranteed to exist, thus making the search problem

a total search problem. Linear-FIXP is the subclass obtained by

restricting the arithmetic circuits to be piecewise linear.

As defined above, the classes FIXP and Linear-FIXP consist of

real-valued search problems, which means that reductions must

specify a real-valued function mapping fixed points of the func-

tion 𝐹 to solutions of the search problem. In the case when 𝐹 is

computed by a piecewise linear arithmetic circuit 𝐶 , there exists

rational-valued fixed points of polynomial bitsize in the size of𝐶 [25,

Theorem 5.2], which allows the use of ordinary polynomial-time

reductions. With this convention, Etessami and Yannakakis [25]

showed that PPAD = Linear-FIXP [25, Theorem 5.4].

3.3 PPAD-Membership via Convex Optimization
From the characterization PPAD = Linear-FIXP, in order to prove

Theorem 3.1, it is sufficient to reduce the task of computing an

ex-ante envy-free and Pareto-optimal lottery to that of computing

a fixed point of a piecewise linear arithmetic circuit defined on an

explicitly given convex polytope.

Constructing such a suitable circuit from scratch can poten-

tially be a very challenging task, as many existing proofs of PPAD-

membership in the literature give evidence of. Recently however,

Filos-Ratsikas et al. [27, 28] introduced a general technique for prov-

ing FIXP and PPAD-membership, by which the arithmetic circuit

defining the fixed point search problem can be augmented with

pseudo-gates that solve very general convex optimization problems.

By a pseudo-gate, we mean a (multi-input and multi-output) gate

that is only required to compute the correct output at a fixed point

of the full circuit. More precisely, the pseudo-gate is implemented

by an arithmetic circuit using auxiliary variables, and when these

auxiliary variables are in a fixed point, the pseudo-gate computes

the correct output.

Definition 3.8 (Pseudo-circuit). A pseudo-circuit with 𝑛 inputs

and 𝑚 outputs is an arithmetic circuit 𝐶 computing a function

𝐹 : R𝑛 × [0, 1]ℓ → R𝑚 × [0, 1]ℓ . The output of 𝐶 on input 𝑥 ∈ R𝑛
is any 𝑦 ∈ R𝑚 such that there exists 𝑧 ∈ [0, 1]ℓ such that 𝐹 (𝑥, 𝑧) =
(𝑦, 𝑧). The variables 𝑧 ∈ [0, 1]ℓ are called auxiliary variables.

By a pseudo-gate, we mean the use of a pseudo-circuit as a sub-

circuit of larger pseudo-circuit, and where the auxiliary variables

of the pseudo-gate are augmented to the auxiliary variables of the

larger pseudo-circuit. The simple but crucial observation about

pseudo-circuits is that, for the purpose of proving FIXP and PPAD-

membership they are just as good as normal arithmetic circuits.

In the setting of PPAD, Filos-Ratsikas et al. [28] developed a

pseudo-gate, coined the linear-OPT-gate, implemented as a piece-

wise linear arithmetic circuit, that in particular can be used to solve

both the linear program (1) and the feasibility problem (2). For the

linear program (1) this is possible since the coefficients of all linear

constraints are constants and that the coefficients of the objective

function are linear functions of the parameter variables w. For the

feasibility program (2) this is possible since the coefficients of all

linear constraints are constants and the antecedents of the condi-

tional linear constraints are given by a strict linear inequalities for

functions computable by piecewise linear circuits applied to the

parameter variables q.

3.4 Proof of Theorem 3.1
We finally show how our fixed point formulation for ex-ante envy-

free and Pareto-optimal lotteries in conjunction with the framework

of Filos-Ratsikas et al. [28] allows for a simple proof of PPAD mem-

bership for the problem of computing such lotteries.

The fixed point formulation of Proposition 3.7 amounts to find-

ing (q, p,w) such that (q, p) is an optimal solution of the LP (1),

parametrized by w, and such that w is a solution to the feasibility

program of conditional linear constraints (2), parametrized by q.
We thus build a piecewise linear arithmetic pseudo-circuit 𝐶

accomplishing both tasks. The circuit 𝐶 takes as input the vari-

ables (q, p,w). Using the linear-OPT-gate of [28] we let 𝐶 output

(q′, p′,w′) such that:

(1) (q′, p′) is an optimal solution of LP (1) parametrized by w.

(2) If the feasibility program (2) parametrized by q is feasible,

then w′
is a solution.

Suppose now that (q, p,w) is a fixed point of the circuit 𝐶 (where

also the auxiliary inputs of 𝐶 are assumed to be in a fixed point).

Since (q, p) is then an optimal solution of LP (1) parametrized

by w, this means that q is Pareto-optimal by the weighted sum

method. From Observation 3.6 and Lemma 3.5 we then have that

the feasibility program (2) parametrized by q is in fact feasible, and

this then means thatw is a solution. By Proposition 3.7 we can then

conclude that q is an ex-ante envy-free and Pareto-optimal lottery.

We have thus reduced the task of computing an ex-ante envy-

free and Pareto-optimal lottery to the task of computing a fixed

point of a piecewise linear arithmetic pseudo-circuit defined on a

explicitly given convex polytope, thereby completing the proof.
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4 AN EFFICIENT ALGORITHM FOR
CONSTANT NUMBER OF AGENTS

In this section, we develop a very simple polynomial time algo-

rithm for computing an ex-ante envy-free and Pareto-optimal lot-

tery when the number of agents is constant. Consider a fair di-

vision instance I consisting of 𝑛 agents, a set of 𝑚 partitions

P = {𝑃1, 𝑃2, ..., 𝑃𝑚}, and agent utilities 𝑢𝑘
𝑖 𝑗

for 𝑖, 𝑗 ∈ [𝑛] and

𝑘 ∈ [𝑚]. The algorithm begins with evaluating the agents’ valua-

tions in the 𝑛! possible allocations for each partition 𝑃𝑘 for 𝑘 ∈ [𝑚].
That is, we obtain 𝑛! utility profiles in R𝑛 for each partition and

𝑚 ·𝑛! utility profiles overall. The Pareto-optimal lotteries are formed

by faces of the convex hull of these utility profiles.

Since the dimension 𝑛 is constant, the convex hull can be com-

puted in polynomial time [20]. We may then enumerate over the

faces forming the Pareto-frontier. For each of these faces, we com-

pute a hyperplane 𝐻 that contains the face. For such a hyperplane

𝐻 = {𝑥 ∈ R𝑛 | 𝑤1𝑥1 +𝑤2𝑥2 + · · · +𝑤𝑛𝑥𝑛 = 𝑤0}, we can determine

whether it contains an envy-free lottery by linear programming.

find (q, p)
s.t. 𝑢𝑖 (q; 𝑖) ≥ 𝑢𝑖 (q; 𝑖 ′) for all 𝑖, 𝑖 ′ ∈ [𝑛]

𝑛∑
𝑖=1

𝑤𝑖𝑢𝑖 (q; 𝑖) = 𝑤0

𝑛∑
𝑖=1

𝑞𝑘
𝑖 𝑗

= 𝑝𝑘 for all 𝑗 ∈ [𝑛], 𝑘 ∈ [𝑚]
𝑛∑
𝑗=1

𝑞𝑘
𝑖 𝑗

= 𝑝𝑘 for all 𝑖 ∈ [𝑛], 𝑘 ∈ [𝑚]
𝑚∑
𝑘=1

𝑝𝑘 = 1

𝑝𝑘 ≥ 0 for all 𝑘 ∈ [𝑚]
𝑞𝑘
𝑖 𝑗

≥ 0 for all 𝑖, 𝑗 ∈ [𝑛], 𝑘 ∈ [𝑚]

Since we know that there does exist an ex-ante envy-free and

Pareto-optimal lottery, at least one of these linear programs must

be feasible. The next statement summarizes the discussion above.

Theorem 4.1. For fair division instances with a constant number
of agents, an ex-ante envy-free and Pareto-optimal allocation can be
computed in polynomial time.

5 ENVY-FREE AND PARETO-OPTIMAL
LOTTERIES OF HIGH SOCIAL WELFARE

As our last technical contribution, we study the problem of opti-

mizing social welfare over ex-ante envy-free and Pareto-optimal

allocation lotteries and prove the following statement for its deci-

sion version. A few proofs are omitted; these may be found in the

full version of the paper [15].

Theorem 5.1. Given a fair division instance with partition-based
utilities and 𝐾 > 0, the problem of deciding whether there exists
an ex-ante envy-free and Pareto-optimal allocation lottery of social
welfare at least 𝐾 is NP-complete.

It is easy to see that the above problem belongs to the complexity

class NP. First, notice that it is trivial to check whether a given

lottery q is ex-ante envy-free and has social welfare at least 𝐾 . To

verify Pareto optimality, it suffices to search for another lottery q̃
which gives to any agent expected utility at least as high as her

expected utility in q, maximizing the total excessive utility through

the following linear program:

max

𝑛∑
𝑖=1

𝑡𝑖

s.t. 𝑢𝑖 (q̃; 𝑖) ≥ 𝑢𝑖 (q; 𝑖) + 𝑡𝑖 for all 𝑖 ∈ [𝑛]
𝑛∑
𝑖=1

𝑞𝑘
𝑖 𝑗

= 𝑝𝑘 for all 𝑗 ∈ [𝑛], 𝑘 ∈ [𝑚]
𝑛∑
𝑗=1

𝑞𝑘
𝑖 𝑗

= 𝑝𝑘 for all 𝑖 ∈ [𝑛], 𝑘 ∈ [𝑚]
𝑚∑
𝑘=1

𝑝𝑘 = 1

𝑞𝑘
𝑖 𝑗

≥ 0 for all 𝑖, 𝑗 ∈ [𝑛], 𝑘 ∈ [𝑚]
𝑝𝑘 ≥ 0 for all 𝑘 ∈ [𝑚]
𝑡𝑖 ≥ 0 for all 𝑖 ∈ [𝑛]

Clearly, the lottery q̃ Pareto-dominates q if and only if the objec-

tive value of the above linear program is strictly positive.

For proving NP-hardness, we will develop a polynomial-time

reduction from the classic NP-complete problem Exact Cover by
3-Sets (X3C) [33] to our problem. X3C is defined as follows:

Instance: A universe E = {𝑒1, 𝑒2, . . . , 𝑒𝑟 } of 𝑟 elements, a family

S = {𝑆1, 𝑆2, . . . , 𝑆𝑡 } of triplets from E, i.e., 𝑆 𝑗 ⊆ E with |𝑆 𝑗 | = 3 for

all 𝑗 ∈ [𝑡].
Question: Does there exist an exact cover, i.e., a set of 𝑟/3 triplets

from S that includes all elements of the universe E?
For 𝑖 ∈ [𝑟 ], we let 𝑓𝑖 denote the frequency of occurrence of

element 𝑒𝑖 , i.e., 𝑓𝑖 := |{ 𝑗 : 𝑒𝑖 ∈ 𝑆 𝑗 }|.

5.1 The Reduction
Starting with an instance 𝜙 of X3C, our reduction constructs a fair

division instance I(𝜙) as follows. Instance I(𝜙) has the following
set of 𝑛 = 𝑡 + 1 + 2𝑡2 + 3𝑟 agents.

• 𝑡 + 1 base agents 𝑏0, 𝑏1, 𝑏2, . . . , 𝑏𝑡 ,
• 2𝑡 set agents ℎ 𝑗,1, ℎ 𝑗,2, . . . , ℎ 𝑗,2𝑡 , for every 𝑗 ∈ [𝑡],
• three element agents 𝑣𝑖 ,𝑤𝑖 , and 𝑧𝑖 for every 𝑖 ∈ [𝑟 ]

The set P of admissible partitions of an underlying set of items

consists of 𝑚 = 3𝑡 partitions 𝑃 𝑗,𝑐 for 𝑗 ∈ [𝑡] and 𝑐 ∈ [3]. We

identify the 𝑛 bundles of partitions in accordance to the type of

agents. So, each partition has 𝑡 +1 bundles 𝐵0, 𝐵1, . . . , 𝐵𝑡 , 2𝑡 bundles
𝐻 𝑗,1, . . . , 𝐻 𝑗,2𝑡 for every 𝑗 ∈ [𝑡], and three bundles𝑉𝑖 ,𝑊𝑖 , and 𝑍𝑖 for

every 𝑖 ∈ [𝑟 ]. The utilities of the agents for the bundles of partition
𝑃 𝑗,𝑐 for 𝑗 ∈ [𝑡] and 𝑐 ∈ [3] are given in Table 1. The table includes

only non-zero utilities; any utility that is not specified in the table is

equal to zero. In our reduction, we use parameters Y = 1

12𝑡2
, 𝑅 = 6𝑡3

Y ,

and 𝑄 = 6𝑡
Y .

The reduction is clearly computable in polynomial time.We shall,

without loss of generality, assume in the following that 𝑡 ≥ 9 and

𝑟 ≤ 3𝑡 ; otherwise, it is trivial to decide 𝜙 .

Definition 5.2 (Canonical allocation). For any partition 𝑃 𝑗,𝑐 with

𝑗 ∈ [𝑡] and 𝑐 ∈ [3], we define the canonical allocation as follows:

bundle 𝐵𝑘 is assigned to base agent 𝑏𝑘 for 𝑘 ∈ {0, 1, . . . , 𝑡}, bundle
𝐻 𝑗,ℓ is assigned to set agent ℎ 𝑗,ℓ for ℓ ∈ [2𝑡], and, finally, bundle 𝑉𝑖
is assigned to element agent 𝑣𝑖 , bundle𝑊𝑖 is assigned to element

agent𝑤𝑖 , and 𝑍𝑖 is assigned to element agent 𝑧𝑖 for 𝑖 ∈ [𝑟 ].
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Table 1: The reduction in the proof of Theorem 5.1.

𝑐 agent bundle utility

any 𝑏0 𝐵0 𝑅/𝑡
𝑏0 𝐵 𝑗 𝑅

𝑏 𝑗 𝐵 𝑗 𝑅

𝑧𝑖 for 𝑖 ∈ [𝑟 ] : 𝑒𝑖 ∈ 𝑆 𝑗 𝑍𝑖 1/𝑓𝑖
1 ℎ 𝑗,1 𝐻 𝑗,1 𝑄

𝑣𝑖 for 𝑖 ∈ [𝑟 ] : 𝑒𝑖 ∈ 𝑆 𝑗 𝑉𝑖 2

𝑧𝑖 for 𝑖 ∈ [𝑟 ] : 𝑒𝑖 ∈ 𝑆 𝑗 𝑉𝑖 2/3
2 ℎ 𝑗,2 𝐻 𝑗,2 𝑄

𝑤𝑖 for 𝑖 ∈ [𝑟 ] : 𝑒𝑖 ∈ 𝑆 𝑗 𝑊𝑖 2

𝑧𝑖 for 𝑖 ∈ [𝑟 ] : 𝑒𝑖 ∈ 𝑆 𝑗 𝑊𝑖 (1 + 1/𝑓𝑖 )/𝑓𝑖
3 ℎ 𝑗,1 𝐻 𝑗,1 𝑄 (1 − Y)

ℎ 𝑗,2 𝐻 𝑗,2 𝑄 (1 − Y)
ℎ 𝑗,ℓ for ℓ = 3, ..., 𝑡 + 1 𝐻 𝑗,1 Y

ℎ 𝑗,ℓ for ℓ = 𝑡 + 2, ..., 2𝑡 𝐻 𝑗,2 Y

𝑣𝑖 for 𝑖 ∈ [𝑟 ] : 𝑒𝑖 ∈ 𝑆 𝑗 𝑉𝑖 2

𝑤𝑖 for 𝑖 ∈ [𝑟 ] : 𝑒𝑖 ∈ 𝑆 𝑗 𝑊𝑖 2

𝑧𝑖 for 𝑖 ∈ [𝑟 ] : 𝑒𝑖 ∈ 𝑆 𝑗 𝑉𝑖 2/3
𝑧𝑖 for 𝑖 ∈ [𝑟 ] : 𝑒𝑖 ∈ 𝑆 𝑗 𝑊𝑖 (1 + 1/𝑓𝑖 )/𝑓𝑖

5.2 Proof of Theorem 5.1
We now prove the correctness of our reduction. We remark that

when we refer to the expected social welfare achieved by a set 𝐹 of

agents in a lottery q, we refer to the sum of the expected utilities

of agents in 𝐹 in q. We begin two two simple technical lemmas.

Lemma 5.3. Consider an ex-ante envy-free lottery of instance I(𝜙).
For 𝑗 ∈ [𝑡], the expected utility the set and element agents can get
from each of the partitions 𝑃 𝑗,1 or 𝑃 𝑗,2, conditioned on the partition
being the outcome of the lottery, is at most 𝑄 + 9. Similarly, the
expected utility the set and element agents can get from the partition
𝑃 𝑗,3, conditioned on the partition being the outcome of the lottery, is
at most 𝑄/2 + 9.

Lemma 5.4. In instance I(𝜙), for any partition 𝑃 𝑗,𝑐 with 𝑗 ∈ [𝑡]
and 𝑐 ∈ [3], any allocation in the support of a Pareto-optimal lottery,
either assigns bundle 𝐵 𝑗 to agent 𝑏0 or assigns bundle 𝐵0 to agent 𝑏0
and bundle 𝐵 𝑗 to agent 𝑏 𝑗 .

Proof. Consider a Pareto-optimal lottery q and assume, for the

sake of contradiction, that it has in its support an allocation in

partition 𝑃 𝑗,𝑐 for 𝑗 ∈ [𝑡] and 𝑐 ∈ [3] which assigns to the base

agent 𝑏0 neither bundle 𝐵0 nor bundle 𝐵 𝑗 . Then, since the base

agent 𝑏0 is the only one who can get positive utility from bundle

𝐵0, the lottery q̃, which moves probability mass from the above

allocation to the one in which the agent who gets bundle 𝐵0 and

the base agent 𝑏0 have their bundles swapped, Pareto-dominates q,
contradicting its Pareto-optimality.

Now, assume that q has in its support an allocation in partition

𝑃 𝑗,𝑐 for 𝑗 ∈ [𝑡] and 𝑐 ∈ [3], in which the base agent 𝑏0 is assigned

to bundle 𝐵0 but bundle 𝐵 𝑗 is not assigned to the base agent 𝑏 𝑗 .

Then, since the base agent 𝑏 𝑗 is the only agent besides 𝑏0 who

has positive utility for bundle 𝐵 𝑗 at partition 𝑃 𝑗,𝑐 , the lottery q̃,

which moves probability mass from this allocation to the one in

which the agent who gets bundle 𝐵 𝑗 and the base agent 𝑏 𝑗 have

their bundles swapped, Pareto-dominates q, again contradicting its

Pareto-optimality. The lemma follows. □

In the statements and proofs below, for a given lottery, we denote

by 𝑝 𝑗,𝑐 the probability of partition 𝑃 𝑗,𝑐 being the outcome of the

lottery, for 𝑗 ∈ [𝑡] and 𝑐 ∈ [3]. The next lemma shows that ex-ante

envy-free lotteries of high social welfare must place close to total

probability
1

𝑡 on the partitions 𝑃 𝑗,1, 𝑃 𝑗,2 and 𝑃 𝑗,3, for each 𝑗 ∈ [𝑡].

Lemma 5.5. In any ex-ante envy-free and Pareto-optimal lottery of
instance I(𝜙) in which the base agents have social welfare at least
𝑅 +𝑅/𝑡 + 𝑟/𝑡 − 3, it holds that 𝑝 𝑗,1 +𝑝 𝑗,2 +𝑝 𝑗,3 ∈ [ 1−Y𝑡 , 1+Y𝑡 ], for each
𝑗 ∈ [𝑡].

Our next technical lemma shows that in Pareto-optimal lotteries,

almost all of the total probability given to the two partitions 𝑃 𝑗,1
and 𝑃 𝑗,2 is given to one of them.

Lemma 5.6. Any Pareto-optimal lottery in instance I(𝜙) satisfies
max{𝑝 𝑗,1, 𝑝 𝑗,2} ≥ (1 − Y) (𝑝 𝑗,1 + 𝑝 𝑗,2), for all 𝑗 ∈ [𝑡].

Together, the lemmas above allow us to show that any ex-ante

envy-free and Pareto-optimal lottery of high social welfare has an

almost combinatorial structure. We remark that this is the crucial

property of our reduction that essentially allows us to embed the

combinatorial search space of X3C into the continuous space of

allocation lotteries. Namely, for each 𝑗 ∈ [𝑡], the lottery must give

a probability mass of almost 1/𝑡 to one of the partitions 𝑃 𝑗,1 or 𝑃 𝑗,2,
and a probability mass of almost 0 to the other. This is stated more

precisely in the following lemma.

Lemma 5.7. In instance I(𝜙), any ex-ante envy-free and Pareto-
optimal lottery, in which the expected social welfare of the set and
element agents is at least𝑄 +6+𝑟/𝑡 and the expected social welfare of
the base agents is at least 𝑅 +𝑅/𝑡 +𝑟/𝑡 −3, satisfiesmax{𝑝 𝑗,1, 𝑝 𝑗,2} ≥
1−3Y
𝑡 , min{𝑝 𝑗,1, 𝑝 𝑗,2} ≤ 2Y

𝑡 , and 𝑝 𝑗,3 ≤ Y
𝑡 for each 𝑗 ∈ [𝑡].

Our arguments in the next two lemmas use a particular type of

non-canonical allocations.

Definition 5.8. An allocation in partition 𝑃 𝑗,𝑐 for 𝑗 ∈ [𝑡] and
𝑐 ∈ [3] is called defective if there is 𝑖 ∈ [𝑟 ] such that 𝑒𝑖 ∈ 𝑆 𝑗 and
agent 𝑧𝑖 is not assigned bundle 𝑍𝑖 .

Our next lemma proves an upper bound on the probability mass

put by any Pareto-optimal lottery with high enough social welfare

on defective allocations.

Lemma 5.9. In instance I(𝜙), any ex-ante envy-free and Pareto-
optimal lottery with social welfare at least 𝑅 + 𝑅/𝑡 + 𝑟/𝑡 − 3 for the
base agents and at least 𝑄 + 6 + 𝑟/𝑡 for the set and element agents,
must put a probability mass of at most 5Y on defective allocations.

We are now ready to prove the soundness and completeness of

our reduction. This is done in Lemmas 5.10 and 5.11, respectively,

which complete the proof of Theorem 5.1. In the proof of the next

lemma, for a given lottery, we will denote by 𝛾 𝑗,𝑐 the probability

mass put on defective allocations in partition 𝑃 𝑗,𝑐 for 𝑗 ∈ [𝑡] and
𝑐 ∈ [3]. We denote by 𝛾 the total probability mass put on defective

allocations, i.e., 𝛾 =
∑

𝑗 ∈[𝑡 ]
(
𝛾 𝑗,1 + 𝛾 𝑗,2 + 𝛾 𝑗,3

)
.
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Lemma 5.10. If instance I(𝜙) admits an ex-ante envy-free and
Pareto-optimal lottery of social welfare at least 𝑅 + 𝑅/𝑡 +𝑄 + 6 + 𝑟/𝑡 ,
then instance 𝜙 has an exact cover.

Proof. Let q be an ex-ante envy-free and Pareto-optimal lot-

tery in instance I(𝜙) with the stated social welfare guarantee.

By Lemma 5.3, the expected utility set and element agents have

is at most 𝑄 + 9. Hence, the social welfare of the base agents is

at least 𝑅 + 𝑅/𝑡 + 𝑟/𝑡 − 3 and the conditions of Lemma 5.5 are

satisfied. Now, observe that for 𝑖 ∈ [𝑟 ], the utility of agent 𝑧𝑖
is at most 1/𝑓𝑖 in any non-defective allocation in partitions 𝑃 𝑗,𝑐
for 𝑗 ∈ [𝑡] such that 𝑒𝑖 ∈ 𝑆 𝑗 and 𝑐 ∈ [3], while it is at most

max {1/𝑓𝑖 , 2/3, (1 + 1/𝑓𝑖 )/𝑓𝑖 } ≤ 1 + 1/𝑓𝑖 in any defective allocation

in partition 𝑃 𝑗,𝑐 for 𝑗 ∈ [𝑡] such that 𝑒𝑖 ∈ 𝑆 𝑗 and 𝑐 ∈ [3]. Clearly,
the utility of agent 𝑧𝑖 is zero in any allocation in partition 𝑃 𝑗,𝑐 for

𝑗 ∈ [𝑡] such that 𝑒𝑖 ∉ 𝑆 𝑗 . Thus, the expected utility of agent 𝑧𝑖 for

𝑖 ∈ [𝑟 ] is

𝑢𝑧𝑖 (q; 𝑧𝑖 )

≤
∑︁

𝑗 ∈[𝑡 ]:𝑒𝑖 ∈𝑆 𝑗

(
(𝑝 𝑗,1 + 𝑝 𝑗,2 + 𝑝 𝑗,3 − 𝛾 𝑗,1 − 𝛾 𝑗,2 − 𝛾 𝑗,3) ·

1

𝑓𝑖

+(𝛾 𝑗,1 + 𝛾 𝑗,2 + 𝛾 𝑗,3) ·
(
1 + 1

𝑓𝑖

))
=

∑︁
𝑗 ∈[𝑡 ]:𝑒𝑖 ∈𝑆 𝑗

(𝑝 𝑗,1 + 𝑝 𝑗,2 + 𝑝 𝑗,3) ·
1

𝑓𝑖

+
∑︁

𝑗 ∈[𝑡 ]:𝑒𝑖 ∈𝑆 𝑗

(𝛾 𝑗,1 + 𝛾 𝑗,2 + 𝛾 𝑗,3)

≤ 1 + Y
𝑡

∑︁
𝑗 ∈[𝑡 ]:𝑒𝑖 ∈𝑆 𝑗

1

𝑓𝑖
+ 𝛾 ≤ 1

𝑡
+ Y
𝑡
+ 5Y <

1

𝑡
+ 1

2𝑡2
. (3)

The second inequality follows by Lemma 5.5 which asserts that

𝑝 𝑗,1 + 𝑝 𝑗,2 + 𝑝 𝑗,3 ≤ 1+Y
𝑡 , the third one by the definition of 𝑓𝑖 and

Lemma 5.9, and the last one by the definition of Y (recall that Y =
1

12𝑡2
) and since 𝑡 ≥ 9.

On the other hand, notice that the bundle 𝐵0 gives utility 𝑅/𝑡
only to the base agent 𝑏0, while for 𝑗 ∈ [𝑡] and 𝑐 ∈ [3], the only
bundle among 𝐵1, 𝐵2, ..., 𝐵𝑡 that gives non-zero utility (equal to 𝑅)

to some base agent is bundle 𝐵 𝑗 . Thus, the social welfare of the base

agents is at most 𝑅 + 𝑅/𝑡 and, hence, the social welfare of the set
and element agents in lottery q is at least𝑄 + 6+ 𝑟/𝑡 . Together with
the properties of ex-ante envy-freeness and Pareto-optimality and

the lower bound on the social welfare of the base agents claimed

above, the conditions of Lemma 5.7 are satisfied, meaning that the

lottery q has the combinatorial structure indicated by it.

Define 𝐶 = { 𝑗 ∈ [𝑡] : 𝑝 𝑗,1 ≥ 1−3Y
𝑡 }. We will show that 𝐶 forms

an exact cover of 𝜙 . For the sake of contradiction, assume otherwise

that there exists an element 𝑒𝑖∗ for some 𝑖∗ ∈ [𝑟 ] that is included in
either none or in at least two sets 𝑆 𝑗 such that 𝑗 ∈ 𝐶 . We distinguish

between two cases:

Case 1. If 𝑒𝑖∗ is not included in any set 𝑆 𝑗 such that 𝑗 ∈ 𝐶 , then
𝑝 𝑗,1 < 1−3Y

𝑡 and, by Lemma 5.7, 𝑝 𝑗,2 ≥ 1−3Y
𝑡 for all 𝑗 ∈ [𝑡] such

that 𝑒𝑖∗ ∈ 𝑆 𝑗 . Now, notice that agent𝑤𝑖∗ is assigned bundle𝑊𝑖∗ (for

which agent 𝑧𝑖∗ has utility (1 + 1/𝑓𝑖∗ )/𝑓𝑖∗ ) in every non-defective

allocation in partition 𝑃 𝑗,2 for 𝑗 ∈ [𝑡] such that 𝑒𝑖∗ ∈ 𝑆 𝑗 . Thus, the

expected utility agent 𝑧𝑖∗ has for bundle assigned to agent𝑤𝑖∗ is

𝑢𝑧𝑖∗ (q;𝑤𝑖∗ )

≥
∑︁

𝑗 ∈[𝑡 ]:𝑒𝑖∗ ∈𝑆 𝑗

(𝑝 𝑗,2 − 𝛾 𝑗,2) ·
(
1 + 1

𝑓𝑖∗

)
· 1

𝑓𝑖∗
≥

(
1 + 1

𝑡

)
·

∑︁
𝑗 ∈[𝑡 ]:𝑒𝑖∗ ∈𝑆 𝑗

(𝑝 𝑗,2 − 𝛾 𝑗,2) ·
1

𝑓𝑖∗

≥
(
1 + 1

𝑡

)
· 1 − 3Y

𝑡
·

∑︁
𝑗 ∈[𝑡 ]:𝑒𝑖∗ ∈𝑆 𝑗

1

𝑓𝑖∗
−
(
1 + 1

𝑡

)
·

∑︁
𝑗 ∈[𝑡 ]:𝑒𝑖∗ ∈𝑆 𝑗

𝛾 𝑗,2

𝑓𝑖∗

≥
(
1 + 1

𝑡

)
· 1 − 3Y

𝑡
−
(
1 + 1

𝑡

)
· 𝛾 ≥ 1

𝑡
+ 1

𝑡2
− 3Y

𝑡2
− 8Y

𝑡
− 5Y

>
1

𝑡
+ 1

2𝑡2
. (4)

The second inequality follows since 𝑓𝑖∗ ≤ 𝑡 by definition, the third

one since 𝑝 𝑗,2 ≥ 1−3Y
𝑡 , the fourth one by the definitions of 𝛾 and

𝑓𝑖∗ , the fifth one by Lemma 5.9, and the last one by the definition

of Y (recall that Y = 1

12𝑡2
and since 𝑡 ≥ 9. By inequalities (3) and (4),

we obtain that 𝑢𝑧𝑖∗ (q; 𝑧𝑖∗ ) < 𝑢𝑧𝑖∗ (q;𝑤𝑖∗ ), meaning that agent 𝑧𝑖∗ is

envious of agent𝑤𝑖∗ , a contradiction.

Case 2. Let 𝐷 = { 𝑗 ∈ 𝐶 : 𝑒𝑖∗ ∈ 𝑆 𝑗 } and assume that |𝐷 | ≥ 2.

Since 𝐷 ⊆ 𝐶 , we have 𝑝 𝑗,1 ≥ 1−3Y
𝑡 for every 𝑗 ∈ 𝐷 . Notice that

agent 𝑣𝑖∗ is assigned bundle𝑉𝑖∗ (for which agent 𝑧𝑖∗ has utility 2/3)
in every non-defective allocation in partition 𝑃 𝑗,1 for 𝑗 ∈ [𝑡] such
that 𝑒𝑖∗ ∈ 𝑆 𝑗 . Thus, the expected utility agent 𝑧𝑖∗ has for the bundle

assigned to agent 𝑣𝑖∗ is

𝑢𝑧𝑖∗ (q; 𝑣𝑖∗ ) ≥
∑︁
𝑗 ∈𝐷

2

3

· (𝑝 𝑗,1 − 𝛾 𝑗,1) ≥
4

3

· 1 − 3Y

𝑡
− 2

3

· 𝛾

≥ 4

3𝑡
− 4Y

𝑡
− 10

3

Y ≥ 1

𝑡
+ 1

2𝑡2
. (5)

The third inequality follows by Lemma 5.9 and the last one by the

definition of Y (recall that Y = 1

12𝑡2
) and since 𝑡 ≥ 9. By inequalities

(3) and (5), we obtain that𝑢𝑧𝑖∗ (q; 𝑧𝑖∗ ) < 𝑢𝑧𝑖∗ (q;𝑤𝑖∗ ), again meaning

that agent 𝑧𝑖∗ is envious of agent𝑤𝑖∗ , a contradiction. □

Lemma 5.11. If instance𝜙 has an exact cover, then instanceI(𝜙) ad-
mits an ex-ante envy-free and Pareto-optimal lottery of social welfare
at least 𝑅 + 𝑅/𝑡 +𝑄 + 6 + 𝑟/𝑡 .

6 CONCLUSION
In this work, we considered the general setting of the problem of

dividing indivisible items in a fair and efficient manner to agents

having partition-based utilities. We have shown membership of

the total problem of finding ex-ante envy-free and Pareto-optimal

allocation lotteries in the class PPAD. We consider settling the

precise computational complexity of the problem an important

question. From an algorithmic perspective it would also be very

interesting to see if Lemke’s algorithm [34] could be adapted to

solve the problem, as this would likely lead to a practical algorithm.
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