
JaxMARL: Multi-Agent RL Environments and Algorithms in JAX
Extended Abstract

Alexander Rutherford∗†
University of Oxford

arutherford@robots.ox.ac.uk

Benjamin Ellis∗†
University of Oxford

benellis@robots.ox.ac.uk

Matteo Gallici∗†
Universitat Politècnica de Catalunya

gallici@cs.upc.edu

Jonathan Cook∗
University of Oxford
jcook@robots.ox.ac.uk

Andrei Lupu∗
University of Oxford

andrei.lupu@mail.mcgill.ca

Garðar Ingvarsson∗
University College London
gardarjuto@gmail.com

Timon Willi∗
University of Oxford

timon.willi@gmail.com

Akbir Khan
University College London

akbir.94@gmail.com

Christian Schroeder de Witt
University of Oxford
cs@robots.ox.ac.uk

Alexandra Souly
University College London
alexandrasouly@gmail.com

Saptarashmi Bandyopadhyay
University of Maryland

saptab1@umd.edu

Mikayel Samvelyan
University College London
m.samvelyan@cs.ucl.ac.uk

Minqi Jiang
University College London

mnqjng@gmail.com

Robert Lange
Technical University Berlin
robert.t.lange@tu-berlin.de

Shimon Whiteson
University of Oxford

shimon.whiteson@cs.ox.ac.uk

Bruno Lacerda
University of Oxford
bruno@robots.ox.ac.uk

Nick Hawes
University of Oxford
nickh@robots.ox.ac.uk

Tim Rocktäschel
University College London
tim.rocktaschel@ucl.ac.uk

Chris Lu∗†
University of Oxford

christopher.lu@exeter.ox.ac.uk

Jakob Foerster
University of Oxford
jakob@robots.ox.ac.uk

ABSTRACT
Benchmarks play an important role in the development of machine
learning algorithms, with reinforcement learning (RL) research hav-
ing been heavily influenced by the available environments. How-
ever, RL environments are traditionally run on the CPU, limiting
their scalability with typical academic compute. Recent advance-
ments in JAX have enabled the wider use of hardware acceleration
to overcome these computational hurdles, enabling massively par-
allel RL training pipelines and environments. This is particularly
useful for multi-agent reinforcement learning (MARL) research.
First of all, multiple agents must be considered at each environment
step, adding computational burden, and secondly, the sample com-
plexity is increased due to non-stationarity, decentralised partial
observability, or other MARL challenges. In this paper, we present
JaxMARL, the first open-source code base that combines ease-of-
use with GPU enabled efficiency, and supports a large number of
commonly used MARL environments as well as popular baseline
algorithms. When considering wall clock time, our experiments

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). This work is licenced under the Creative
Commons Attribution 4.0 International (CC-BY 4.0) licence.

show that per-run our JAX-based training pipeline is up to 12500x
faster than existing approaches. We also introduce and benchmark
SMAX, a vectorised, simplified version of the popular StarCraft
Multi-Agent Challenge, which removes the need to run the Star-
Craft II game engine. This not only enables GPU acceleration, but
also provides a more flexible MARL environment, unlocking the
potential for self-play, meta-learning, and other future applications
in MARL. We provide code at https://github.com/flairox/jaxmarl.

KEYWORDS
Multi-Agent Reinforcement Learning, JAX, Benchmarks
ACM Reference Format:
Alexander Rutherford[1][2], Benjamin Ellis[1][2],MatteoGallici[1][2], Jonathan
Cook[1], Andrei Lupu[1], Garðar Ingvarsson[1], TimonWilli[1], Akbir Khan,
Christian Schroeder de Witt, Alexandra Souly, Saptarashmi Bandyopad-
hyay, Mikayel Samvelyan, Minqi Jiang, Robert Lange, Shimon Whiteson,
Bruno Lacerda, Nick Hawes, Tim Rocktäschel, Chris Lu[1][2], and Jakob
Foerster. 2024. JaxMARL: Multi-Agent RL Environments and Algorithms
in JAX: Extended Abstract. In Proc. of the 23rd International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2024), Auckland, New
Zealand, May 6 – 10, 2024, IFAAMAS, 3 pages.

∗Core Contributor
†Equal Contribution

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2444

https://github.com/flairox/jaxmarl

(a) MPE (b) Overcooked (c) Multi-Agent Brax

(d) STORM (e) Hanabi (f) SMAX

Figure 1: A selection of JaxMARL environments. We provide
vectorised implementations of a wide range of environments
from different MARL settings.

1 INTRODUCTION
Benchmarks play a pivotal role in the development of new sin-
gle and multi-agent reinforcement learning (MARL) algorithms
by defining problems, enabling comparisons, and focusing efforts.
Often, data transfer between the CPU (where the environment is
simulated) and the GPU (where the agents are evaluated) is a crucial
bottleneck for simulation speed. Simulation speed in turn is vital
for progress in reinforcement learning (RL) because RL algorithms
often require a large number of environment interactions.

This problem is compounded in MARL, where non-stationarity
and decentralised partial observability greatly worsen the sample
complexity [1]. Hardware acceleration and parallelisation are cru-
cial to alleviating this, but current acceleration and parallelisation
methods are typically not implemented in Python, reducing their
accessibility for most machine learning researchers [14, 16]. For
example, the extremely efficient Hanabi library [6] from Meta-AI
research is implemented in C++ and has seen relatively little adop-
tion by the community. However, recent advances in JAX [2] have
opened up new possibilities for using Python code directly with
hardware accelerators, enabling the wider use of massively parallel
RL training pipelines and environments.

The JAX [2] library provides composable function transforma-
tions, allowing for automatic vectorisation, device parallelisation,
automatic differentiation and just-in-time (JIT) compilation, for
device-agnostic optimisation. Using JAX, both the environment
rollouts and model training can happen on a hardware accelera-
tor (such as a GPU or TPU), removing the cost of data transfer
between devices and allowing for significant parallelisation. Re-
cently, PureJaxRL [8, 9] has demonstrated the power of this end-to-
end JAX-based approach; running both the environment and the
model training on a GPU yields a 4000x speedup over a “traditional”
pipeline with a GPU-trained policy but a CPU-based environment.

Alongside the current computational issues faced by MARL re-
searchers, recent work also highlights issues with the evaluation

standards and use of benchmarks in the MARL community. In par-
ticular, MARL papers typically only test on a few domains. Of the 75
recent MARL papers analysed by [5], 50% used only one evaluation
environment and a further 30% used only two. While the StarCraft
Multi-Agent Challenge [SMAC, 12] and MPE [7], the two most used
environments, have various tasks or maps, the lack of a standard
set raises the risk of biased comparisons and incorrect conclusions.
This leads to environment overfitting and unclear progress markers.

Instead, novel MARL methods should be tested on a wide range
of domains to accurately evaluate their limits and enable better
comparisons. The likely issue preventing this is the lack of a unified
codebase and the computational burden of further evaluation.

2 JAXMARL
We present JaxMARL, a Python library that for the first time brings
together JAX implementations of eight common MARL environ-
ments under one API. We additionally provide JAX implementa-
tions for five state-of-the-art algorithms, allowing for end-to-end
JAX-based training pipelines in a similar fashion to PureJaxRL. By
alleviating computational constraints, JaxMARL allows rapid eval-
uation of novel methods across a broad set of domains, and hence
has the potential to be a powerful tool to address MARL’s evalua-
tion crisis. Specifically, we find that JaxMARL achieves over 12500x
speedup compared to “conventional” approaches.

We also create SMAX, a JAX-based simplification of the cen-
tralised training with decentralised execution (CTDE) benchmarks
SMAC [12] and SMACv2 [4]. SMAX features simplified dynamics,
greater flexibility and a more sophisticated but fully-decentralised
heuristic AI, while retaining the high-dimensional observation
space, complex unit type interactions and procedural scenario gen-
eration that lend SMAC and SMACv2 much of their difficulty.

As illustrated in Figure 1, in addition to SMAX, our library in-
cludes the most popular environments from several MARL set-
tings. For CTDE, we include the Multi-Agent Particle Environments
(MPE) [7], and Multi-Agent Brax (MABrax). Meanwhile, for zero-
shot coordination (ZSC) and ad-hoc teamplay, we include Hanabi
and Overcooked. Lastly, from the general-sum literature, we include
the CoinGame and Spatial-Temporal Representations of Matrix
Games (STORM), a representation of matrix games as grid-world
scenarios with temporally extended actions.

We additionally provide JAX implementations of Independent
PPO (IPPO) [3, 13], MAPPO [17], QMIX [11], VDN [15] and Inde-
pendent 𝑄-Learning (IQL) [10], five of the most common MARL
algorithms, allowing new techniques to be easily benchmarked.

3 RESULTS AND CONCLUSIONS
All of our implementations provide orders-of-magnitude speed-ups
compared to their current non-JAX implementations, with specific
results provided within our GitHub repository. We additionally
demonstrate correspondence between our implementations and
existing ones. Hardware acceleration offers important opportunities
for MARL research by lowering computational barriers, increasing
the speed at which ideas can be iterated, and allowing for more
thorough evaluation. We hope that JaxMARL will help advance
MARL by improving the ability of academic labs to conduct research
with thorough, fast, and effective evaluations.

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2445

REFERENCES
[1] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. 2002.

The complexity of decentralized control of Markov decision processes. Mathe-
matics of operations research 27, 4 (2002), 819–840.

[2] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. http://github.com/google/jax

[3] Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviy-
chuk, Philip H. S. Torr, Mingfei Sun, and Shimon Whiteson. 2020. Is In-
dependent Learning All You Need in the StarCraft Multi-Agent Challenge?
https://doi.org/10.48550/arXiv.2011.09533 arXiv:2011.09533 [cs].

[4] Benjamin Ellis, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Ma-
hajan, Jakob N Foerster, and Shimon Whiteson. 2022. SMACv2: An improved
benchmark for cooperative multi-agent reinforcement learning. arXiv preprint
arXiv:2212.07489 (2022).

[5] Rihab Gorsane, Omayma Mahjoub, Ruan de Kock, Roland Dubb, Siddarth Singh,
and Arnu Pretorius. 2022. Towards a Standardised Performance Evaluation
Protocol for Cooperative MARL. arXiv preprint arXiv:2209.10485 (2022).

[6] Hengyuan Hu and Jakob N Foerster. 2020. Simplified Action Decoder for Deep
Multi-Agent Reinforcement Learning. In International Conference on Learning
Representations. https://openreview.net/forum?id=B1xm3RVtwB

[7] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and IgorMordatch. 2017.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments.
Neural Information Processing Systems (NIPS) (2017).

[8] Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt,
and Jakob Foerster. 2022. Discovered policy optimisation. Advances in Neural
Information Processing Systems 35 (2022), 16455–16468.

[9] Chris Lu, Timon Willi, Alistair Letcher, and Jakob Nicolaus Foerster. 2023. Ad-
versarial cheap talk. In International Conference on Machine Learning. PMLR,
22917–22941.

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[11] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Far-
quhar, Jakob Foerster, and Shimon Whiteson. 2020. Monotonic value function
factorisation for deep multi-agent reinforcement learning. The Journal of Machine
Learning Research 21, 1 (2020), 7234–7284.

[12] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Far-
quhar, Nantas Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob
Foerster, and Shimon Whiteson. 2019. The starcraft multi-agent challenge. arXiv
preprint arXiv:1902.04043 (2019).

[13] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[14] Brennan Shacklett, Luc Guy Rosenzweig, Zhiqiang Xie, Bidipta Sarkar, Andrew
Szot, Erik Wijmans, Vladlen Koltun, Dhruv Batra, and Kayvon Fatahalian. 2023.
An Extensible, Data-Oriented Architecture for High-Performance, Many-World
Simulation. ACM Trans. Graph. 42, 4 (2023).

[15] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl
Tuyls, et al. 2017. Value-decomposition networks for cooperative multi-agent
learning. arXiv preprint arXiv:1706.05296 (2017).

[16] Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Vik-
tor Makoviychuk, Zichen Liu, Yufan Song, Ting Luo, Yukun Jiang, Zhong-
wen Xu, and Shuicheng Yan. 2022. EnvPool: A Highly Parallel Rein-
forcement Learning Environment Execution Engine. In Advances in Neu-
ral Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates, Inc.,
22409–22421. https://proceedings.neurips.cc/paper_files/paper/2022/file/
8caaf08e49ddbad6694fae067442ee21-Paper-Datasets_and_Benchmarks.pdf

[17] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen,
and Yi Wu. 2022. The surprising effectiveness of ppo in cooperative multi-agent
games. Advances in Neural Information Processing Systems 35 (2022), 24611–24624.

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2446

http://github.com/google/jax
https://doi.org/10.48550/arXiv.2011.09533
https://openreview.net/forum?id=B1xm3RVtwB
https://proceedings.neurips.cc/paper_files/paper/2022/file/8caaf08e49ddbad6694fae067442ee21-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8caaf08e49ddbad6694fae067442ee21-Paper-Datasets_and_Benchmarks.pdf

	Abstract
	1 Introduction
	2 JaxMARL
	3 Results and Conclusions
	References

