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ABSTRACT
Benchmarks play an important role in the development of machine
learning algorithms, with reinforcement learning (RL) research hav-
ing been heavily influenced by the available environments. How-
ever, RL environments are traditionally run on the CPU, limiting
their scalability with typical academic compute. Recent advance-
ments in JAX have enabled the wider use of hardware acceleration
to overcome these computational hurdles, enabling massively par-
allel RL training pipelines and environments. This is particularly
useful for multi-agent reinforcement learning (MARL) research.
First of all, multiple agents must be considered at each environment
step, adding computational burden, and secondly, the sample com-
plexity is increased due to non-stationarity, decentralised partial
observability, or other MARL challenges. In this paper, we present
JaxMARL, the first open-source code base that combines ease-of-
use with GPU enabled efficiency, and supports a large number of
commonly used MARL environments as well as popular baseline
algorithms. When considering wall clock time, our experiments
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show that per-run our JAX-based training pipeline is up to 12500x
faster than existing approaches. We also introduce and benchmark
SMAX, a vectorised, simplified version of the popular StarCraft
Multi-Agent Challenge, which removes the need to run the Star-
Craft II game engine. This not only enables GPU acceleration, but
also provides a more flexible MARL environment, unlocking the
potential for self-play, meta-learning, and other future applications
in MARL. We provide code at https://github.com/flairox/jaxmarl.
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Figure 1: A selection of JaxMARL environments. We provide
vectorised implementations of a wide range of environments
from different MARL settings.

1 INTRODUCTION
Benchmarks play a pivotal role in the development of new sin-
gle and multi-agent reinforcement learning (MARL) algorithms
by defining problems, enabling comparisons, and focusing efforts.
Often, data transfer between the CPU (where the environment is
simulated) and the GPU (where the agents are evaluated) is a crucial
bottleneck for simulation speed. Simulation speed in turn is vital
for progress in reinforcement learning (RL) because RL algorithms
often require a large number of environment interactions.

This problem is compounded in MARL, where non-stationarity
and decentralised partial observability greatly worsen the sample
complexity [1]. Hardware acceleration and parallelisation are cru-
cial to alleviating this, but current acceleration and parallelisation
methods are typically not implemented in Python, reducing their
accessibility for most machine learning researchers [14, 16]. For
example, the extremely efficient Hanabi library [6] from Meta-AI
research is implemented in C++ and has seen relatively little adop-
tion by the community. However, recent advances in JAX [2] have
opened up new possibilities for using Python code directly with
hardware accelerators, enabling the wider use of massively parallel
RL training pipelines and environments.

The JAX [2] library provides composable function transforma-
tions, allowing for automatic vectorisation, device parallelisation,
automatic differentiation and just-in-time (JIT) compilation, for
device-agnostic optimisation. Using JAX, both the environment
rollouts and model training can happen on a hardware accelera-
tor (such as a GPU or TPU), removing the cost of data transfer
between devices and allowing for significant parallelisation. Re-
cently, PureJaxRL [8, 9] has demonstrated the power of this end-to-
end JAX-based approach; running both the environment and the
model training on a GPU yields a 4000x speedup over a “traditional”
pipeline with a GPU-trained policy but a CPU-based environment.

Alongside the current computational issues faced by MARL re-
searchers, recent work also highlights issues with the evaluation

standards and use of benchmarks in the MARL community. In par-
ticular, MARL papers typically only test on a few domains. Of the 75
recent MARL papers analysed by [5], 50% used only one evaluation
environment and a further 30% used only two. While the StarCraft
Multi-Agent Challenge [SMAC, 12] and MPE [7], the two most used
environments, have various tasks or maps, the lack of a standard
set raises the risk of biased comparisons and incorrect conclusions.
This leads to environment overfitting and unclear progress markers.

Instead, novel MARL methods should be tested on a wide range
of domains to accurately evaluate their limits and enable better
comparisons. The likely issue preventing this is the lack of a unified
codebase and the computational burden of further evaluation.

2 JAXMARL
We present JaxMARL, a Python library that for the first time brings
together JAX implementations of eight common MARL environ-
ments under one API. We additionally provide JAX implementa-
tions for five state-of-the-art algorithms, allowing for end-to-end
JAX-based training pipelines in a similar fashion to PureJaxRL. By
alleviating computational constraints, JaxMARL allows rapid eval-
uation of novel methods across a broad set of domains, and hence
has the potential to be a powerful tool to address MARL’s evalua-
tion crisis. Specifically, we find that JaxMARL achieves over 12500x
speedup compared to “conventional” approaches.

We also create SMAX, a JAX-based simplification of the cen-
tralised training with decentralised execution (CTDE) benchmarks
SMAC [12] and SMACv2 [4]. SMAX features simplified dynamics,
greater flexibility and a more sophisticated but fully-decentralised
heuristic AI, while retaining the high-dimensional observation
space, complex unit type interactions and procedural scenario gen-
eration that lend SMAC and SMACv2 much of their difficulty.

As illustrated in Figure 1, in addition to SMAX, our library in-
cludes the most popular environments from several MARL set-
tings. For CTDE, we include the Multi-Agent Particle Environments
(MPE) [7], and Multi-Agent Brax (MABrax). Meanwhile, for zero-
shot coordination (ZSC) and ad-hoc teamplay, we include Hanabi
and Overcooked. Lastly, from the general-sum literature, we include
the CoinGame and Spatial-Temporal Representations of Matrix
Games (STORM), a representation of matrix games as grid-world
scenarios with temporally extended actions.

We additionally provide JAX implementations of Independent
PPO (IPPO) [3, 13], MAPPO [17], QMIX [11], VDN [15] and Inde-
pendent 𝑄-Learning (IQL) [10], five of the most common MARL
algorithms, allowing new techniques to be easily benchmarked.

3 RESULTS AND CONCLUSIONS
All of our implementations provide orders-of-magnitude speed-ups
compared to their current non-JAX implementations, with specific
results provided within our GitHub repository. We additionally
demonstrate correspondence between our implementations and
existing ones. Hardware acceleration offers important opportunities
for MARL research by lowering computational barriers, increasing
the speed at which ideas can be iterated, and allowing for more
thorough evaluation. We hope that JaxMARL will help advance
MARL by improving the ability of academic labs to conduct research
with thorough, fast, and effective evaluations.
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