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ABSTRACT
Nowadays, the diffusion of information through social networks is
a powerful phenomenon. One common way to model diffusions in
social networks is the Independent Cascade (IC) model. Given a set
of infected nodes according to the IC model, a natural problem is
the source detection problem, in which the goal is to identify the
unique node that has started the diffusion. Maximum Likelihood
Estimation (MLE) is a common approach for tackling the source
detection problem, but it is computationally hard.

In this work, we propose an efficient method for the source
detection problem under the MLE approach, which is based on
computing the stationary distribution of a Markov chain. Using
simulations, we demonstrate the effectiveness of our method com-
pared to other state-of-the-art methods from the literature, both on
random and real-world networks.
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1 INTRODUCTION
In the age of social media, the spread of information and infection
through networks is a significant phenomenon. Understanding the
dynamic of information spread and its origin are important for
a wide range of applications, including marketing, public health,
and identification of fake news. The Independent Cascade (IC) is
a common model of the spread of information in a social network
[2]. In the IC model, the process of diffusion concerns a message
that is propagated through the network. Every connection between
two friends is associated with a probability; this value determines
the probability that if the first user shares the message, the second
user will share the message with her friends as well. As commonly
occurs in the spread of fake news, the diffusion process starts with
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a single initial source. A natural goal is that given a set of users who
shared a specific message, to seek the unique source that started
the diffusion.

There are many approaches to finding the source of a diffusion in
the literature, each assuming different spreadingmodels and various
amounts of knowledge of the network parameters (for example, [3–
5, 9]). When the probabilities associated with the connections are
known or can easily be estimated, a natural mathematical approach
for finding the source of the diffusion is the Maximum Likelihood
Estimation (MLE) principle. According to the MLE principle, one
should compute the likelihood of each user being the source, and
output the user with the maximum likelihood.

The first to formalize the computational problem of finding the
source of a diffusion in a network in the IC model are Lappas et al.
[5]. They show that for arbitrary graphs, the source detection prob-
lem is not only NP-hard to find but also NP-hard to approximate.
Therefore, they propose an efficient heuristic, but it does not utilize
the MLE principle. Zhai et al. [8] present a heuristic that utilizes
the MLE principle, and they further show that their heuristic out-
performs the heuristic of [5]. However, their heuristic requires
extensive computation and does not perform very well. In addition,
they note that “although the IC model is popular in social network
research, finding source in the IC model is rarely studied”. Recently,
Amoruso et al. [1] provide a strong heuristic for finding the source
of a diffusion in a network in the IC model.

In this paper, we propose an efficient method that uses the MLE
principle for source detection in the IC model. Our method is based
on computing the stationary distribution of a Markov chain and is
inspired by [4]. Specifically, we recognize that if we represent the
social network as a weighted directed graph, the diffusion in the
IC model induces a tree that spans the set of users who shared the
message, and the root of the tree is the user that initiated the diffu-
sion. In addition, the tree is associated with a weight, which equals
to the product of the weights of its edges. In order to estimate the
probability of a specific user to be the source, we would like to sum
the weights of all spanning tree rooted at this user. However, di-
rectly considering all trees is computationally expensive. Therefore,
we propose converting the social network into a Markov chain, and
the Markov chain tree theorem [6] allows us to compute the sum of
the weights of all spanning trees rooted at each user in polynomial
time. We consider two approaches for converting the social net-
work to a Markov chain—the self-loops and the no-loops methods.
We show that when using a direct calculation of the stationary
distribution, both methods compute the exact value of the sum of
the weights of all spanning trees rooted at each user, but this is not
guaranteed when using a random walk to estimate the stationary
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Advogato Digg Epinion Facebook Google Slashdot Twitter Youtube Average
trust friendships plus links

Self-loops (direct calc.) 222 451 428 354 125 471 241 486 347.25
10 steps 68 216 161 146 89 246 167 141 154.25
100 steps 86 237 205 170 98 289 230 168 185.375
1000 steps 111 300 270 233 116 358 230 270 236
10000 steps 175 383 363 308 118 418 247 341 294.125

No-loops (direct calc.) 222 451 428 354 125 471 241 486 347.25
10 steps 88 248 216 179 82 301 167 203 185.5
100 steps 132 311 286 252 121 389 253 287 253.875
1000 steps 191 398 384 307 128 444 236 367 306.875
10000 steps 214 441 423 344 126 468 236 441 336.625

Naive 139 172 146 176 78 174 149 131 145.625
Max weight arbo.[1] 136 353 329 278 125 380 184 358 267.875
Random 52 130 98 89 71 137 115 79 96.375
Max out-deg 39 115 82 76 79 130 132 47 87.5
Min in-deg 70 162 125 117 72 155 115 128 118
Max (out/in)-deg 63 132 115 95 86 141 161 154 118.375
IM based 94 309 230 196 120 302 218 273 217.75

Table 1: The number of times in which each method finds the correct source node in the real-world networks. The values are out
of 1000 cases in which the number of active nodes is at least 20 and there is no trivial solution.

distribution. For evaluating the effectiveness of our approach, we
use 14 types of random graphs, and sample 1000 graphs from each
type. In addition, we evaluate the effectiveness of our approach on
8 real-world networks, including a portion of Digg, Facebook, and
Twitter. We show that our methods outperform several baseline
methods, including the method proposed by [8] and [1]. We further
show that the no-loops method outperforms the self-loops method
when using a random walk to estimate the stationary distribution.
That is, the no-loops method requires fewer random walk steps
to approach the performance of our methods when using a direct
calculation of the stationary distribution.

2 EXPERIMENTS
For the evaluation of the performance of the self-loops and the
no-loops methods, and comparing it to other baselines heuristics,
we use 14 types of directed random graphs that have diffusion prob-
abilities on their edges, as well as 8 real-world directed networks
from the “social” category of the Konect database 1.

We evaluate the performance of the self-loops and the no-loops
methods, using a direct calculation of the stationary distribution.
In addition, we evaluated these methods when the stationary distri-
bution is estimated by random walks with 10, 100, 1000, or 10, 000
steps. Finally, we evaluate the performance of the following baseline
methods:

• Naive: The Markov chain approach with the naive conver-
sion method.

• Random: A random selection of a node.
• Max out-degree: The node with the maximal weighted
out-degree is selected.

1http://konect.cc/networks/

• Min in-degree: The node with the minimal weighted in-
degree is selected.

• Max (out/in) degree: The node with the maximal weighted
out-degree divided by its weighted in-degree is selected.

• IM based: For each node, we simulate 1000 diffusions, and
the node with the maximal average size of the active set is
selected.

• Maximum arborescence [1]: The node which is the root
of the maximum weight spanning out-tree (arborescence) is
selected.

We also evaluate the performance of the method proposed by
[8]. However, unfortunately, this method takes extensive time to
run and does not perform as well as our simple heuristics (max
out-degree and min in-degree).

Table 1 presents the results for the real-world graphs. As can
be seen in the table the self-loops and no-loops methods using a
direct calculation of the stationary distribution outperform all other
methods (on average). As expected, these methods achieved the
exact same results. We note that, at times, our methods using ran-
dom walks may perform slightly better than when using the direct
calculation; however, this is only due to the inherent randomness
of the problem.

In addition, we found that the no-loops method using random
walks requires fewer steps than the self-loops method using random
walks to approach the performance of our methods when using a
direct calculation of the stationary distribution.
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