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ABSTRACT
We introduce hybrid execution in multi-agent reinforcement learn-
ing (MARL), a new paradigm in which agents aim to successfully
complete cooperative tasks with arbitrary communication levels at
execution time by taking advantage of information-sharing among
the agents. Under hybrid execution, the communication level can
range from a setting inwhich no communication is allowed between
agents (fully decentralized), to a setting featuring full communi-
cation (fully centralized), but the agents do not know beforehand
which communication level they will encounter at execution time.
To formalize our setting, we define a new class of multi-agent par-
tially observable Markov decision processes (POMDPs) that we
name hybrid-POMDPs, which explicitly model a communication
process between the agents.
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1 INTRODUCTION
Multi-agent reinforcement learning (MARL) aims to learn utility-
maximizing behavior in scenarios involving multiple agents. Deep
MARL methods have been successfully applied to multi-agent tasks
such as game-playing [8], traffic light control [11], or energy man-
agement [2]. Despite recent successes, the multi-agent setting is
substantially harder than its single-agent counterpart [1].

As a way to deal with the exponential growth in the state/action
space and with environmental constraints, both in perception and
actuation, existing methods aim to learn decentralized policies
that allow the agents to act based on local perceptions and partial
information. The paradigm of centralized training with decentralized
execution is at the core of recent research in the field [3, 7, 9]; such
paradigm takes advantage of the fact that additional information,
available only at training time, can be used to learn decentralized
policies in a way that the need for communication is alleviated.

While in some settings partial observability and/or communica-
tion constraints require learning fully decentralized policies, the as-
sumption that agents cannot communicate at execution time is often
too strict for a great number of real-world scenarios [4, 12]. In such
domains, learning fully decentralized policies should be deemed too
restrictive since such policies do not take into account the possibil-
ity of communication between the agents. Other MARL strategies,
which do take advantage of additional information shared among
the agents, can surely be developed [13].

In this work, we propose RL agents that are able to exploit the
benefits of centralized trainingwhile taking advantage of information-
sharing at execution time. We introduce the paradigm of hybrid
execution, in which agents act in scenarios with arbitrary (but un-
known) communication levels that can range from no communica-
tion (fully decentralized) to full communication between the agents
(fully centralized). In particular, we consider scenarios with faulty
communication during execution, in which agents passively share
their local observations to perform partially observable cooperative
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tasks. We formalize the setting of hybrid execution in MARL by
introducing hybrid partially observable Markov decision processes
(H-POMDPs), a new class of multi-agent POMDPs.

2 HYBRID EXECUTION IN MULTI-AGENT RL
A fully cooperative multi-agent system with Markovian dynamics
can be modeled as a decentralized partially observable Markov
decision process (Dec-POMDP) [6]. A Dec-POMDP is a tuple

( [𝑛],X,A,P,P0, 𝑟 , 𝛾,Z,O),
where [𝑛] = {1, . . . , 𝑛} is the set of indexes of 𝑛 agents, X is the
set of states of the environment, A = ×𝑖A𝑖 is the set of joint
actions, whereA𝑖 is the set of individual actions of agent 𝑖 , P is the
set of probability distributions over next states in X, one for each
state and action in X × A, P0 is the probability distribution over
initial states, 𝑟 : X × A → R maps states and actions to expected
rewards, 𝛾 ∈ [0, 1[ is a discount factor, Z = ×𝑖Z𝑖 is the set of joint
observations, whereZ𝑖 is the set of local observations of agent 𝑖 ,
and O is the set of probability distributions over joint observations
inZ, one for each state and action inX×A. A decentralized policy
for agent 𝑖 is 𝜋𝑖 : Z𝑖 → A𝑖 and the joint decentralized policy is
𝜋 : Z → A such that 𝜋 (𝑧1, . . . , 𝑧𝑛) =

(
𝜋1 (𝑧1), . . . , 𝜋𝑛 (𝑧𝑛)

)
.

Fully decentralized approaches to MARL directly apply standard
single-agent RL algorithms for learning each agent’s policy 𝜋𝑖 in a
decentralized manner [10]. More recently, under the paradigm of
centralized training with decentralized execution, methods such
as QMIX [9] aim at learning decentralized policies with centraliza-
tion at training time while fostering cooperation among the agents.
Finally, if we know that all agents can share their local observa-
tions among themselves at execution time, we can use any of the
approaches above to learn fully centralized policies.

None of the aforementioned classes of methods assumes, how-
ever, that agents may sometimes have access to other agents’ ob-
servations and sometimes not. Therefore, decentralized agents are
unable to take advantage of the additional information that they
may receive from other agents at execution time, and centralized
agents are unable to act when the sharing of information fails. In
this work, we introduce hybrid execution in MARL, a setting in
which agents act regardless of the communication process while
taking advantage of additional information they may receive dur-
ing execution. To formalize this setting, we define a new class of
multi-agent POMDPs, named hybrid-POMDPs (H-POMDPs), which
explicitly considers a communication process among the agents.

2.1 Hybrid Partially Observable Markov
Decision Processes

We define a hybrid-POMDP (H-POMDP) as a tuple

( [𝑛],X,A,P,P0, 𝑟 , 𝛾,Z,O,𝐶)
where, in addition to the tuple that describes the Dec-POMDP, we
consider a 𝑛 × 𝑛 communication matrix 𝐶 such that [𝐶]𝑖, 𝑗 = 𝑝𝑖, 𝑗
is the probability that, at a certain time step, agent 𝑖 has access to
the local observation of agent 𝑗 in Z𝑗 . H-POMDPs generalize both
the notion of decentralized execution and centralized execution in
MARL. Specifically, for a given Dec-POMDP, we can consider 𝐶 as
the identity matrix to capture fully decentralized execution or as a
matrix of ones to capture fully centralized execution.

In our setting, we assume that at execution time agents will face
an H-POMDP with an unknown communication matrix𝐶 , sampled
from a set C according to an unknown probability distribution 𝜇.
The performance of the agent ismeasured as 𝐽𝜇 (𝜋) = E𝐶∼𝜇 [𝐽 (𝜋 ;𝐶)],
where 𝐽 (𝜋 ;𝐶) denotes the expected discounted cumulative reward
of policy 𝜋 under an H-POMDP with communication matrix 𝐶 .
At training time, the agents have access to the fully centralized H-
POMDP. Thus, the setting we consider is one of centralized training
with hybrid execution and an unknown communication process.

Connecting H-POMDPs and Dec-POMDPs: We can cast every H-
POMDP as a Dec-POMDP as follows: (i) the observation space of
each agent corresponds to the joint observation space, adequately
tuned by including an additional token to encode missing observa-
tions; (ii) the emission function consists of a masking function that
makes only a subset of observations visible to each agent at each
timestep, as parameterized by 𝐶; and (iii) the remainder elements
are the same. However, we seek to find a method that can act on
H-POMDPs regardless of the matrix 𝐶 . To accommodate such fact,
we can extend the state of the Dec-POMDP to include matrix𝐶 and
redefine the distribution over the initial states of the Dec-POMDP
to also encode the uncertainty over the communication matrix𝐶 as
parameterized by 𝜇. Even though there exist connections between
H-POMDPs and Dec-POMDPs, the introduction of the H-POMDPs
formulation is still relevant as it succinctly encodes the various
degrees of centralization that arise in recent MARL research.

3 CONCLUSION
In this work, we introduced the paradigm of centralized training
with hybrid execution, which we formalized by introducing a new
class of multi-agent POMDPs, named H-POMDPs.

Given the aforementioned connections between H-POMDPs and
Dec-POMDPs, we expect the worst-case computational complexity
of solving H-POMDPs to be similar to that of Dec-POMDPs, known
to be NEXP-complete for finite-horizon problems [5]. Nevertheless,
efficient methods to approximately solve H-POMDPs that take
advantage of the specificities of the paradigm of hybrid execution
can still surely be developed. We leave the study of such methods
for future work.
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