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ABSTRACT
Evictions are a threat to housing stability and a major concern
for many cities. An open question is whether data-driven meth-
ods can enhance door-to-door outreach programs to target at-risk
tenants. We model this problem using a new framework we term
geospatial active search. Geospatial Active Search integrates visual
information such as satellite imagery along with tabular data such
as property and neighborhood-level information to create an online
exploration plan. We develop an approach for the implementation
of Geospatial Active Search in St. Louis to find properties containing
tenants who will have an eviction filed against them.

CCS CONCEPTS
• Computing methodologies→ Active learning settings; Se-
quential decision making; Computer vision; Neural networks.
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1 INTRODUCTION
This work establishes the problem of Geospatial Active Search
(GAS) and solves it in the context of tenant outreach. GAS projects
points in the active search problem to a spatial domain, and an agent
queries these points by traveling between them. The effort required
for the agent to move between two points is modeled as the cost of
querying. A trained GAS model is a plan which, given the current
state of exploration, returns the next point to query, and, when a
point is queried, updates the model, estimating which points are
members of the target class. Our contributions are: (1) We propose
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a real-world problem of geospatial exploration; (2) We define this
problem using a framework we term Geospatial Active Search; (3)
We construct an end-to-end pipeline to solve GAS that leverages a
pretraining phase while allowing for test-time adaptation; (4) We
show the potential of GAS by applying it to the task of uncovering
properties with tenants at risk of eviction in St. Louis.

2 RELATEDWORK
Geospatial Active Search builds on Active Search, first proposed
by Garnett et al.. Previous work on Active Search has focused on
developing nonmyopic algorithms [14, 16, 17] and minimizing the
cost of discovery of a set number of targets [13]. Recent approaches
learn policies that adapt at test time using only visual data [18, 19].

Our work is aligned with Mashiat et al., who use the same tabular
data for offline eviction prediction. It also builds on a larger body
of literature focusing on geospatial applications of optimization
and artificial intelligence in humanitarian domains. This includes
solutions for collaborative recycling [12], the redistribution of food
donations [3], the routing of disaster relief [8], predicting micronu-
trient deficiency [7], and anti-poaching measures [4–6, 9, 10, 21].

3 PROBLEM AND PROPOSED APPROACH
A geospatial search task consists, in part, of properties embedded
as points in a geographic region. The classes these points belong to
are not known apriori but can be discovered via sequential queries.
The goal is to uncover as many properties belonging to a prespeci-
fied class as possible. Formally, our search task involves 𝐾 parcels,
defined as 𝑥 = [𝑥1, . . . , 𝑥𝐾 ]. We formalize this by associating each
parcel 𝑗 with a binary label 𝑦 ( 𝑗 ) ∈ {0, 1}, where 𝑦 ( 𝑗 ) = 1 iff parcel
index 𝑗 contains a parcel with future eviction filing. When we in-
quire about parcel 𝑖 , we both acquire the corresponding label 𝑦 (𝑖 )
and gain utility if at least one eviction is filed at parcel 𝑖 within the
next three months. Denoting a query performed in step 𝑡 as 𝑞𝑡 and
𝑐 (𝑖, 𝑗) as the cost associated with querying parcel 𝑗 from parcel 𝑖 ,
our optimization objective is:

max
{𝑞𝑡 }

𝑈 (𝑥 ; {𝑞𝑡 }) ≡
∑︁
𝑡

𝑦 (𝑞𝑡 ) s.t. :
∑︁
𝑡≥0

𝑐 (𝑞𝑡−1, 𝑞𝑡 ) ≤ C (1)

With this objective in mind, we suggest an approach for train-
ing a search policy that acquires the skill of efficient exploration
through learning from similar pre-labeled search tasks. Following
previous work [19], wemodel multi-modal active search as a Budget
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Table 1: Average Number of Targets (ANT) Found by Search Task Parameters and Solution Method

Average Positive Rate of 2.5% Average Positive Rate of 5% Average Positive Rate of 10%

Search Budget 15 20 25 15 20 25 15 20 25

Random 0.328 0.472 0.652 0.656 0.856 1.276 1.428 1.940 2.428
Greedy 0.540 0.632 0.804 1.660 2.040 2.308 3.796 4.296 4.780
Greedy Adaptive 0.556 0.716 0.828 1.788 2.124 2.400 3.872 4.452 5.020
GAS-TAB (no images) 1.008 1.184 1.340 1.972 2.336 2.640 4.216 5.004 5.501
GAS 1.052 1.288 1.352 2.240 2.596 2.828 4.372 5.204 5.632

Constraint MDP. In this MDP, the input state at time 𝑡 includes: 1)
the multi-modal input feature corresponds to 𝐾 parcel, denoted as
𝑥𝑡 , 2) the outcomes of past search queries 𝑜𝑡 , and 3) the remaining
budget 𝐵𝑡 ≤ 𝐶 . Since we possess visual data for each individual
parcel as well as tabular features containing past eviction records
for the corresponding parcels, we utilize a widely adopted multi-
modal transformer architecture as described in [20]. Each element
of search query history 𝑜 corresponds to a parcel index 𝑗 , so that
𝑜 𝑗 = 2𝑦 ( 𝑗 ) − 1. In this MDP, the actions are simply choices over
which parcels to query next. We assign an immediate reward
for query a parcel 𝑗 as 𝑅( 𝑗) = 𝑦 ( 𝑗 ) . The state transition process
involves both updating the remaining budget and incorporating the
result of the most recent search query into the state. Armed with
this MDP problem representation, we next describe our proposed
deep RL approach for learning a search policy that makes use of a
dataset D of past search tasks. Specifically, we use the REINFORCE
to directly learn a search policy𝜓𝜃 (𝑥, 𝑜, 𝐵). In order to utilize the
valuable information we acquire during search, we develop a search
policy comprised of two key components: 1) the prediction mod-
ule represented by 𝑓𝜙 (𝑥, 𝑜) and 2) the search module denoted as
𝑔𝜁 (𝑝, 𝑜, 𝐵), where 𝜙 and 𝜁 represent trainable parameters, where
𝑝 = 𝑓𝜙 (𝑥, 𝑜) is the vector of predicted eviction probabilities with
𝑝 ( 𝑗 ) the predicted probability of at least one eviction in parcel index
𝑗 . In a conceptual sense, 𝑓𝜙 generates predictions by exclusively
considering the task features 𝑥 and previous search outcomes 𝑜 ,
whereas 𝑔𝜁 depends solely on information pertinent to the search
process itself, including the predicted eviction probabilities 𝑝 , 𝑜 and
𝐵. The resulting search policy is a combination of these modules,
expressed as𝜓 (𝑥, 𝑜, 𝐵) = 𝑔𝜁 (𝑓𝜙 (𝑥, 𝑜), 𝑜, 𝐵). Our ultimate objective
is to train both 𝑔𝜁 and 𝑓𝜙 in a manner where 𝑓𝜙 supports adap-
tive search by continuously updating itself during a search task.
To address this, at the start of each task, 𝜙 is set to 𝜙𝑠𝑡𝑎𝑟𝑡 and is
subsequently updated as labels become available after each query
during both training and inference using BCE loss. In the case of
the search module, we calculate the cumulative sum of rewards
𝑅𝑟 =

∑
𝑗 𝑦

( 𝑗 ) for the parcels 𝑗 explored during the episode and
employ the RL loss L𝑅𝐿 based on the REINFORCE algorithm. The
proposed approach balances the RL and supervised loss through
the loss function: L𝐺𝐴𝑆 = (L𝑅𝐿 + 𝜆L𝐵𝐶𝐸 )

4 EXPERIMENTS AND RESULTS
Utilizing real eviction filing data from 2021 and 2022, we implement
GAS to find properties at risk of eviction, defined as having a filing
in the next three months. We assess our models using the average
number of targets found (ANT), which is defined as the targets

found across all tasks divided by the number of search tasks. We
consider uniform query costs: 𝑐 (𝑖, 𝑗) = 1 ∀ 𝑖, 𝑗 , where C is the
number of queries. While this analysis focuses on uniform costs,
our framework supports non-uniform query costs without any
further modifications.

Baseline Search Methods: We evaluate the performance of
GAS using the following baselines: random, where we randomly
choose parcels from those unexplored; greedy, in which we train
a classifier𝜓greedy to predict eviction risk and search highest-risk
properties first; and greedy adaptive, similar to greedy but with
updates to𝜓greedy at each time step based on query outcomes.

Data: The tabular features used are drawn from a companion
study and are originally derived from municipal sources across St.
Louis [15]. They cover eviction court filings, owner information,
and property-level attributes. Neighborhood features are obtained
from the American Community Survey [1]. Satellite imagery data
comes from the National Agriculture Imagery Program (NAIP) [2].

Search Task Design: We construct a series of search tasks,
each containing 100 properties. We bootstrap properties from the
original 26,700 and control for the positive rate. The mean positive
rates are 2.5% (𝜎 = 0.005%) (near the true base rate), 5% (𝜎 = 0.01%),
and 10% (𝜎 = 0.02%). Experiments are run for budgets of 15, 20, and
25 queries, and each parameterization is trained and tested on 250
search tasks.

Results: We evaluate GAS against baselines and present the
results in Table 1. We observe a substantial improvement using
GAS compared to all baselines, ranging from approximately 16%
- 90% when compared to the most competitive approach, greedy
adaptive. We also observe that greedy adaptive outperforms the
greedy method across all experiments. This highlights the impor-
tance of inference time adaptive strategies for optimizing search
efficiency. The use of satellite imagery is supported by an ablation
study, where GAS with tabular and visual data (GAS) outperforms
GAS using only tabular data (GAS-TAB). Finally, the performance
gap between our proposed method and the baseline approaches
is more significant when evictions are scarce and resources are
limited, which reflects the real world.
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ETHICS STATEMENT
While the work presented here is not yet ready to be deployed in
the field, any future outreach performed using these methods must
be carefully considered. When answering the question of who gets
outreach, one inevitably decides who doesn’t. St. Louis has a long
history of housing discrimination, and without careful analysis of
mechanisms for bias, work in this domain risks repeating errors of
the past. Yet, despite this, approaches such as the one presented here
offer promise in being able to more adeptly anticipate those in need
and those who will be able to benefit the most from intervention.
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