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ABSTRACT
Embodied Instruction Following (EIF) is crucial for understanding
natural language in a practical context, requiring agents to fol-
low verbal instructions for complex tasks. Traditionally, EIF relies
heavily on expert annotations for learning, which are costly and
sometimes unattainable. Recent research shows Large Language
Models (LLMs) can use their reasoning ability to help in EIF with
minimal examples, but applying LLMs directly faces issues like
hallucinations and partially observable environment. To bridge the
gap, we introduce OPEx, a new LLM-based method for EIF that
needs far less specific data. OPEx uses three LLMs for different
roles: observing to gather environment data, planning by breaking
down instructions, and executing tasks with learned skills. Our
tests reveal OPEx significantly outperforms the FILM baseline, with
90% less training data for planning tasks and achieving up to 38%
performance gain when FILM is trained on identical data.
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1 INTRODUCTION
The creation of autonomous agents requires integrating extensive
planning with precise execution, a challenge that deep learning ad-
vancements are helping to overcome [1, 7, 8, 11]. Embodied Instruc-
tion Following (EIF) has become a key area of focus, necessitating
agents to follow natural language instructions through egocentric
observations [19]. Traditional EIF methods rely heavily on expert
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annotations, which are costly and sometimes impractical. Large
Language Models (LLMs) present a promising solution, trained on
extensive data to exhibit common-sense reasoning [5, 16, 21, 22],
but direct application to EIF faces challenges like environmental
unpredictability and the need for adaptation.

To address these issues, we introduce OPEx (Observer & Planner
& Executor), a novel LLM-centric framework for EIF that dynami-
cally integrates planning and action. The Planner uses LLMs for task
decomposition, the Observer updates with environmental feedback,
and the Executor translates the plans into actionable steps, using a
skill set to guide the agent in its tasks. OPEx demonstrates signifi-
cant improvements on the ALFRED benchmark [19], achieving over
10% absolute performance gains over the baseline FILM [11], requir-
ing 90% less training data. Besides, it achieves up to 38% absolute
performance gain when FILM is trained on identical data.

2 THE OPEX FRAMEWORK
The OPEx framework introduces a novel approach for Embodied
Instruction Following (EIF) with a focus on dynamic task planning
and grounding, utilizing Large Language Models (LLMs) for en-
hanced efficiency and adaptability. Unlike previous methods that
depend heavily on static plans and supervised learning, OPEx lever-
ages the reasoning capabilities of LLMs to dynamically decompose
tasks, improve grounding, and address the sparse reward prob-
lem in EIF without extensive training data or heuristic rules. As
shown in Fig. 1, OPEx consists of six main components: (1) semantic
mapping module converting egocentric visual observations into se-
mantic maps (2) An LLM-based planner that decomposes language
instructions into subtasks. (3) An LLM-based observer that updates
the world state in natural language description. (4) An LLM-based
executor selecting skills to complete subtasks. (5) A skill library
storing predefined skills for manipulation. (6) A deterministic action
policy for converting skills into actions.

Semantic Mapping Module. This module creates a 2D semantic
map from visual inputs, utilizing UNet [18] for depth mapping and
MaskRCNN [6] for instance segmentation, following FILM [11]. To
address perceptual noise, a supplementary semantic map𝑀′

𝑡 is pro-
posed aggregating information over time and enhancing reliability.

LLM-based Planner. The LLM-based planner aims to break down
a language instruction into subtasks, leveraging LLMs’ reasoning
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LLM

Role:
Observer

Role:
Planner

Role:
Executor

Observer input
———————

Setup: You are a helpful assistant helping …. 
Please output the description of the environment 
with the header 'Observation:'.

Room type: Kitchen.
Task description: Explore the room to have a 
general idea of the environment.
Previously found objects: None. (From semantic 
map)
Objects seen in current observation: None. (From 
RGB image)
Holding object: None.
Error message: None.

RGB image
from Simulator

Semantic
Map

Observer output
———————

Observation: You are in a kitchen. There are no 
objects currently in your view. You are not holding 
any objects.

Executor input
———————

Observation: You are in a kitchen. There are no 
objects currently in your view. You are not holding 
any objects.
Found objects: None.
Objects seeing in current observation: None.
Previous steps: steps=[]
Current objective: Explore the room to have a 
general idea of the environment.

Executor output
———————

Thought: I will explore the room to have a general 
idea of the environment.
Action: Play[Explore,None]

Planner input
———————

Setup: You are an intelligent planner for a 
household robot agent …. Please output the task 
type starting with the header ‘Task type:’. …. Please 
output the plan starting with the header ‘Plan’ and 
…. At the end of your plan, say 
’<END_OF_PLAN>’.

Task: put a washed bowl away in a kitchen 
cabinet.

Planner output
———————

Task type: 
PICK_CLEAN_THEN_PLACE_IN_RECEP
Thought: To complete the task, the robot needs 
to….
Plan:
0. Explore the room to have a general idea of the 
environment.
1. Find a bowl in the room.
   …
6. Put the bowl in the cabinet.
<END_OF_PLAN>

Semantic
mapping

Extract
objects 

informatioin

Skill library
Explore, LookAround, NavigateTo, 
RequireReplan,
…

Action policy
Skill Explore  —> 
(Produced by action planner) LookDown_15, 
MoveAhead, …, RotateRight

Skill NavigateToObject—> 
(Produced by action planner) MoveAhead,  …, 
RotateLeft, MoveAhead, MoveAhead

…

Perform actions to 
the environment

Feed Observer’s 
output to Executor

Feed Planner’s 
output to Executor

Feed output to action 
policy to obtain 
executable actions

Executor 
input 
contains 
information 
from 
Observer, 
Planner, 
and skill 
library.

Output action(s)

The OPEx framework
Planner: decompose a task into sub-tasks.
Observer: collect information from environment and prior 
experience.
Executor: produce actions based on Planner’s plan and 
Observer’s observation guidance.

Figure 1: Overview of our OPEx framework.

capability [3]. Utilizing Chain-of-Thought (CoT) prompting and
GPT-4, we enhance the planner’s reasoning effectiveness through
in-context learning [16, 23]. The planner’s prompt incorporates a
setup phase, with 𝐾 in-context examples chosen by an example
selector. The example selector chooses the most relevant examples
for each task by ranking and selecting top-𝐾 examples based on
the similarity of the input test case and the examples [4, 9].

LLM-based Observer. The LLM-based Observer plays a critical
role in the OPEx framework, aiming to interpret environmental
feedback and agent states into a concise natural language descrip-
tion using a zero-shot approach. This component utilizes GPT-3.5
for querying, with a prompt structure designed to capture and ar-
ticulate the environmental state, thus supporting the monitoring
of dynamic changes over time which aids in dynamic planning and
execution. Besides, the observer is also supposed to condense the
gathered information into a focused description, which helps mini-
mize distractions and hallucinations for the LLM-based executor.

LLM-based Executor. The LLM-based executor plays a pivotal
role in the OPEx framework by executing subtasks using a prede-
fined skill library. Unlike the LLM-based planner, the executor is
actively involved in the environment, leveraging feedback to un-
derstand dynamics and apply the necessary skills to complete tasks.

Method Test Seen Test Unseen
PLWGC GC PLWSR SR PLWGC GC PLWSR SR

High-level Goal Instruction + Low-level step-by-step instructions
Seq2Seq [19] 6.27 9.42 2.02 3.98 4.26 7.03 0.08 3.90
MOCA [20] 22.05 28.29 15.10 22.05 9.99 14.28 2.72 5.30
E.T. [17] 34.93 45.44 27.78 38.42 11.46 18.56 4.10 8.57
LWIT [13] 23.10 40.53 43.10 30.92 16.34 20.91 5.60 9.42
FILM [11] 15.06 38.51 11.23 27.67 14.30 36.37 10.55 26.49
OPEx 14.62 48.74 9.52 38.81 14.45 49.60 9.35 37.15
High-level goal instructions only
LAV [15] 13.18 23.21 6.31 13.35 10.47 17.27 3.12 6.38
HLSM [2] 11.53 35.79 6.69 25.11 8.45 27.24 4.34 16.29
FILM [11] 14.17 36.15 10.39 25.77 13.13 34.75 9.67 24.46
OPEx 14.06 47.81 9.18 38.03 13.48 48.61 9.08 35.91

Table 1: Main Results on the test splits of ALFRED bench-
mark. The top section uses low-level step-by-step instruc-
tions, while the bottom section only uses the high-level goal
instruction.

Method SR GC PLWSR PLWGC
OPEx 38.12 46.13 9.03 13.45
FILM 0.00 12.18 0.00 2.78

Table 2: Performance comparison with the baseline trained
on same amount of data.

Inspired by ReAct [24], the executor employs a GPT-4 model to gen-
erate reasoning traces and action plans, enhancing decision-making
and interaction with the environment. The executor’s operation
is guided by prompts designed to solicit both the thought process
(reasoning traces) and the specific actions to be taken from the
skill library, facilitating a dynamic response to the evolving task
environment. This dual-output approach ensures the executor can
adapt plans based on real-time feedback and handle unforeseen
situations effectively.

Skill Library and Deterministic Action Policy. The skill library
equips the executor with capabilities for reasoning and action, in-
cluding navigation and object interaction skills. The deterministic
action policy translates these skills into low-level actions, employ-
ing heuristics based on the semantic map.

3 EXPERIMENTS AND DISCUSSION
Experiment Setup. Our approach is evaluated on the ALFRED bench-
mark [19]. We employ four primary evaluation metrics as estab-
lished in prior works [11, 19]: Success Rate (SR), Goal Condition
(GC), path length weighted SR (PLWSR), and path length weighted
GC (PLWGC), with SR in the test unseen split serving as the primary
performance indicator.

Compared Methods. The methods compared are categorized
based on their reliance on instruction level: (1) methods necessitat-
ing detailed step-by-step and high-level instructions [13, 17, 19, 20];
(2) methods operational with only high-level instructions [2, 8, 10–
12, 14].

Results Analysis. The main results are shown in Table 1. Remark-
ably, OPEx leverages in-context learning with less than 10% of the
data used for FILM’s Language Processor training yet achieves more
than 10% in SR on both splits under all the settings. Table 2 shows
OPEx’s superior performance over FILM in utilizing in-domain
data. When FILM is trained on the same data, OPEx demonstrates
significant improvements across all metrics.
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