
OPEx: A Large Language Model-Powered Framework for
Embodied Instruction Following

Extended Abstract

Haochen Shi
Université de Montréal & Mila

Montréal, Canada
haochen.shi@umontreal.ca

Zhiyuan Sun
Université de Montréal & Mila

Montréal, Canada
zhiyuan.sun@umontreal.ca

Xingdi Yuan
Microsoft Research
Montréal, Canada

eric.yuan@microsoft.com

Marc-Alexandre Côté
Microsoft Research
Montréal, Canada

macote@microsoft.com

Bang Liu
Université de Montréal & Mila

Montréal, Canada
bang.liu@umontreal.ca

ABSTRACT
Embodied Instruction Following (EIF) is crucial for understanding
natural language in a practical context, requiring agents to fol-
low verbal instructions for complex tasks. Traditionally, EIF relies
heavily on expert annotations for learning, which are costly and
sometimes unattainable. Recent research shows Large Language
Models (LLMs) can use their reasoning ability to help in EIF with
minimal examples, but applying LLMs directly faces issues like
hallucinations and partially observable environment. To bridge the
gap, we introduce OPEx, a new LLM-based method for EIF that
needs far less specific data. OPEx uses three LLMs for different
roles: observing to gather environment data, planning by breaking
down instructions, and executing tasks with learned skills. Our
tests reveal OPEx significantly outperforms the FILM baseline, with
90% less training data for planning tasks and achieving up to 38%
performance gain when FILM is trained on identical data.

KEYWORDS
Embodied Instruction Following; Language Grounding; Large Lan-
guage Models; Grounded Planning; In Context Learning
ACM Reference Format:
Haochen Shi, Zhiyuan Sun, Xingdi Yuan, Marc-Alexandre Côté, and Bang
Liu. 2024. OPEx: A Large Language Model-Powered Framework for Embod-
ied Instruction Following: Extended Abstract. In Proc. of the 23rd Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS
2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 3 pages.

1 INTRODUCTION
The creation of autonomous agents requires integrating extensive
planning with precise execution, a challenge that deep learning ad-
vancements are helping to overcome [1, 7, 8, 11]. Embodied Instruc-
tion Following (EIF) has become a key area of focus, necessitating
agents to follow natural language instructions through egocentric
observations [19]. Traditional EIF methods rely heavily on expert

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

annotations, which are costly and sometimes impractical. Large
Language Models (LLMs) present a promising solution, trained on
extensive data to exhibit common-sense reasoning [5, 16, 21, 22],
but direct application to EIF faces challenges like environmental
unpredictability and the need for adaptation.

To address these issues, we introduce OPEx (Observer & Planner
& Executor), a novel LLM-centric framework for EIF that dynami-
cally integrates planning and action. The Planner uses LLMs for task
decomposition, the Observer updates with environmental feedback,
and the Executor translates the plans into actionable steps, using a
skill set to guide the agent in its tasks. OPEx demonstrates signifi-
cant improvements on the ALFRED benchmark [19], achieving over
10% absolute performance gains over the baseline FILM [11], requir-
ing 90% less training data. Besides, it achieves up to 38% absolute
performance gain when FILM is trained on identical data.

2 THE OPEX FRAMEWORK
The OPEx framework introduces a novel approach for Embodied
Instruction Following (EIF) with a focus on dynamic task planning
and grounding, utilizing Large Language Models (LLMs) for en-
hanced efficiency and adaptability. Unlike previous methods that
depend heavily on static plans and supervised learning, OPEx lever-
ages the reasoning capabilities of LLMs to dynamically decompose
tasks, improve grounding, and address the sparse reward prob-
lem in EIF without extensive training data or heuristic rules. As
shown in Fig. 1, OPEx consists of six main components: (1) semantic
mapping module converting egocentric visual observations into se-
mantic maps (2) An LLM-based planner that decomposes language
instructions into subtasks. (3) An LLM-based observer that updates
the world state in natural language description. (4) An LLM-based
executor selecting skills to complete subtasks. (5) A skill library
storing predefined skills for manipulation. (6) A deterministic action
policy for converting skills into actions.

Semantic Mapping Module. This module creates a 2D semantic
map from visual inputs, utilizing UNet [18] for depth mapping and
MaskRCNN [6] for instance segmentation, following FILM [11]. To
address perceptual noise, a supplementary semantic map𝑀′

𝑡 is pro-
posed aggregating information over time and enhancing reliability.

LLM-based Planner. The LLM-based planner aims to break down
a language instruction into subtasks, leveraging LLMs’ reasoning

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2465

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

LLM

Role:
Observer

Role:
Planner

Role:
Executor

Observer input
———————

Setup: You are a helpful assistant helping ….
Please output the description of the environment
with the header 'Observation:'.

Room type: Kitchen.
Task description: Explore the room to have a
general idea of the environment.
Previously found objects: None. (From semantic
map)
Objects seen in current observation: None. (From
RGB image)
Holding object: None.
Error message: None.

RGB image
from Simulator

Semantic
Map

Observer output
———————

Observation: You are in a kitchen. There are no
objects currently in your view. You are not holding
any objects.

Executor input
———————

Observation: You are in a kitchen. There are no
objects currently in your view. You are not holding
any objects.
Found objects: None.
Objects seeing in current observation: None.
Previous steps: steps=[]
Current objective: Explore the room to have a
general idea of the environment.

Executor output
———————

Thought: I will explore the room to have a general
idea of the environment.
Action: Play[Explore,None]

Planner input
———————

Setup: You are an intelligent planner for a
household robot agent …. Please output the task
type starting with the header ‘Task type:’. …. Please
output the plan starting with the header ‘Plan’ and
…. At the end of your plan, say
’<END_OF_PLAN>’.

Task: put a washed bowl away in a kitchen
cabinet.

Planner output
———————

Task type:
PICK_CLEAN_THEN_PLACE_IN_RECEP
Thought: To complete the task, the robot needs
to….
Plan:
0. Explore the room to have a general idea of the
environment.
1. Find a bowl in the room.
 …
6. Put the bowl in the cabinet.
<END_OF_PLAN>

Semantic
mapping

Extract
objects

informatioin

Skill library
Explore, LookAround, NavigateTo,
RequireReplan,
…

Action policy
Skill Explore —>
(Produced by action planner) LookDown_15,
MoveAhead, …, RotateRight

Skill NavigateToObject—>
(Produced by action planner) MoveAhead, …,
RotateLeft, MoveAhead, MoveAhead

…

Perform actions to
the environment

Feed Observer’s
output to Executor

Feed Planner’s
output to Executor

Feed output to action
policy to obtain
executable actions

Executor
input
contains
information
from
Observer,
Planner,
and skill
library.

Output action(s)

The OPEx framework
Planner: decompose a task into sub-tasks.
Observer: collect information from environment and prior
experience.
Executor: produce actions based on Planner’s plan and
Observer’s observation guidance.

Figure 1: Overview of our OPEx framework.

capability [3]. Utilizing Chain-of-Thought (CoT) prompting and
GPT-4, we enhance the planner’s reasoning effectiveness through
in-context learning [16, 23]. The planner’s prompt incorporates a
setup phase, with 𝐾 in-context examples chosen by an example
selector. The example selector chooses the most relevant examples
for each task by ranking and selecting top-𝐾 examples based on
the similarity of the input test case and the examples [4, 9].

LLM-based Observer. The LLM-based Observer plays a critical
role in the OPEx framework, aiming to interpret environmental
feedback and agent states into a concise natural language descrip-
tion using a zero-shot approach. This component utilizes GPT-3.5
for querying, with a prompt structure designed to capture and ar-
ticulate the environmental state, thus supporting the monitoring
of dynamic changes over time which aids in dynamic planning and
execution. Besides, the observer is also supposed to condense the
gathered information into a focused description, which helps mini-
mize distractions and hallucinations for the LLM-based executor.

LLM-based Executor. The LLM-based executor plays a pivotal
role in the OPEx framework by executing subtasks using a prede-
fined skill library. Unlike the LLM-based planner, the executor is
actively involved in the environment, leveraging feedback to un-
derstand dynamics and apply the necessary skills to complete tasks.

Method Test Seen Test Unseen
PLWGC GC PLWSR SR PLWGC GC PLWSR SR

High-level Goal Instruction + Low-level step-by-step instructions
Seq2Seq [19] 6.27 9.42 2.02 3.98 4.26 7.03 0.08 3.90
MOCA [20] 22.05 28.29 15.10 22.05 9.99 14.28 2.72 5.30
E.T. [17] 34.93 45.44 27.78 38.42 11.46 18.56 4.10 8.57
LWIT [13] 23.10 40.53 43.10 30.92 16.34 20.91 5.60 9.42
FILM [11] 15.06 38.51 11.23 27.67 14.30 36.37 10.55 26.49
OPEx 14.62 48.74 9.52 38.81 14.45 49.60 9.35 37.15
High-level goal instructions only
LAV [15] 13.18 23.21 6.31 13.35 10.47 17.27 3.12 6.38
HLSM [2] 11.53 35.79 6.69 25.11 8.45 27.24 4.34 16.29
FILM [11] 14.17 36.15 10.39 25.77 13.13 34.75 9.67 24.46
OPEx 14.06 47.81 9.18 38.03 13.48 48.61 9.08 35.91

Table 1: Main Results on the test splits of ALFRED bench-
mark. The top section uses low-level step-by-step instruc-
tions, while the bottom section only uses the high-level goal
instruction.

Method SR GC PLWSR PLWGC
OPEx 38.12 46.13 9.03 13.45
FILM 0.00 12.18 0.00 2.78

Table 2: Performance comparison with the baseline trained
on same amount of data.

Inspired by ReAct [24], the executor employs a GPT-4 model to gen-
erate reasoning traces and action plans, enhancing decision-making
and interaction with the environment. The executor’s operation
is guided by prompts designed to solicit both the thought process
(reasoning traces) and the specific actions to be taken from the
skill library, facilitating a dynamic response to the evolving task
environment. This dual-output approach ensures the executor can
adapt plans based on real-time feedback and handle unforeseen
situations effectively.

Skill Library and Deterministic Action Policy. The skill library
equips the executor with capabilities for reasoning and action, in-
cluding navigation and object interaction skills. The deterministic
action policy translates these skills into low-level actions, employ-
ing heuristics based on the semantic map.

3 EXPERIMENTS AND DISCUSSION
Experiment Setup. Our approach is evaluated on the ALFRED bench-
mark [19]. We employ four primary evaluation metrics as estab-
lished in prior works [11, 19]: Success Rate (SR), Goal Condition
(GC), path length weighted SR (PLWSR), and path length weighted
GC (PLWGC), with SR in the test unseen split serving as the primary
performance indicator.

Compared Methods. The methods compared are categorized
based on their reliance on instruction level: (1) methods necessitat-
ing detailed step-by-step and high-level instructions [13, 17, 19, 20];
(2) methods operational with only high-level instructions [2, 8, 10–
12, 14].

Results Analysis. The main results are shown in Table 1. Remark-
ably, OPEx leverages in-context learning with less than 10% of the
data used for FILM’s Language Processor training yet achieves more
than 10% in SR on both splits under all the settings. Table 2 shows
OPEx’s superior performance over FILM in utilizing in-domain
data. When FILM is trained on the same data, OPEx demonstrates
significant improvements across all metrics.

ACKNOWLEDGMENTS
This work is supported by the Canada CIFAR AI Chair Program
and the Canada NSERC Discovery Grant (RGPIN-2021-03115).

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2466

REFERENCES
[1] Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet,

Brandon Houghton, Raul Sampedro, and Jeff Clune. 2022. Video pretraining
(vpt): Learning to act by watching unlabeled online videos. Advances in Neural
Information Processing Systems 35 (2022), 24639–24654.

[2] Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg, and Yoav Artzi. 2022.
A persistent spatial semantic representation for high-level natural language
instruction execution. In Conference on Robot Learning. PMLR, 706–717.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[4] Harrison Chase. 2022. LangChain. https://github.com/hwchase17/langchain
[5] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdh-

ery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu,
et al. 2023. Palm-e: An embodied multimodal language model. arXiv preprint
arXiv:2303.03378 (2023).

[6] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision. 2961–2969.

[7] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. 2022. Lan-
guage models as zero-shot planners: Extracting actionable knowledge for embod-
ied agents. In International Conference on Machine Learning. PMLR, 9118–9147.

[8] Yuki Inoue and Hiroki Ohashi. 2022. Prompter: Utilizing Large Language Model
Prompting for a Data Efficient Embodied Instruction Following. arXiv preprint
arXiv:2211.03267 (2022).

[9] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and
Weizhu Chen. 2022. What Makes Good In-Context Examples for GPT-3?
Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on
Knowledge Extraction and Integration for Deep Learning Architectures (2022).
https://doi.org/10.18653/v1/2022.deelio-1.10

[10] Xiaotian Liu, Hector Palacios, and Christian Muise. 2022. A planning based
neural-symbolic approach for embodied instruction following. Interactions 9, 8
(2022), 17.

[11] So Yeon Min, Devendra Singh Chaplot, Pradeep Ravikumar, Yonatan Bisk, and
Ruslan Salakhutdinov. 2021. Film: Following instructions in language with
modular methods. arXiv preprint arXiv:2110.07342 (2021).

[12] Michael Murray and Maya Cakmak. 2022. Following natural language instruc-
tions for household tasks with landmark guided search and reinforced pose
adjustment. IEEE Robotics and Automation Letters 7, 3 (2022), 6870–6877.

[13] Van-Quang Nguyen, Masanori Suganuma, and Takayuki Okatani. 2021. Look
wide and interpret twice: Improving performance on interactive instruction-
following tasks. arXiv preprint arXiv:2106.00596 (2021).

[14] Kolby Nottingham, Prithviraj Ammanabrolu, Alane Suhr, Yejin Choi, Hannaneh
Hajishirzi, Sameer Singh, and Roy Fox. 2023. Do embodied agents dream of pixe-
lated sheep?: Embodied decision making using language guided world modelling.
arXiv preprint arXiv:2301.12050 (2023).

[15] Kolby Nottingham, Litian Liang, Daeyun Shin, Charless C Fowlkes, Roy Fox, and
Sameer Singh. 2021. Modular framework for visuomotor language grounding.
arXiv preprint arXiv:2109.02161 (2021).

[16] R OpenAI. 2023. GPT-4 technical report. arXiv (2023), 2303–08774.
[17] Alexander Pashevich, Cordelia Schmid, and Chen Sun. 2021. Episodic transformer

for vision-and-language navigation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 15942–15952.

[18] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolu-
tional networks for biomedical image segmentation. InMedical Image Computing
and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer, 234–241.

[19] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,
Roozbeh Mottaghi, Luke Zettlemoyer, and Dieter Fox. 2020. Alfred: A benchmark
for interpreting grounded instructions for everyday tasks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 10740–10749.

[20] Kunal Pratap Singh, Suvaansh Bhambri, Byeonghwi Kim, Roozbeh Mottaghi,
and Jonghyun Choi. 2020. Factorizing Perception and Policy for Interactive
Instruction Following. arXiv preprint arXiv:2012.03208 (2020).

[21] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[22] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models. arXiv preprint arXiv:2206.07682
(2022).

[23] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in Neural Information Processing Systems 35
(2022), 24824–24837.

[24] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2022. React: Synergizing reasoning and acting in language models.
arXiv preprint arXiv:2210.03629 (2022).

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2467

https://github.com/hwchase17/langchain
https://doi.org/10.18653/v1/2022.deelio-1.10

	Abstract
	1 Introduction
	2 The OPEx Framework
	3 Experiments and Discussion
	Acknowledgments
	References

