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ABSTRACT
In a multi-agent setting, altruistic cooperation is costly yet socially
desirable. As such, agents adapting through independent reinforce-
ment learning struggle to converge to efficient, cooperative policies.
Indirect reciprocity (IR) constitutes a possible mechanism to en-
courage cooperation by introducing reputations, social norms and
the possibility that agents reciprocate based on past actions. IR has
been mainly studied in homogeneous populations. In this paper, we
introduce a model that allows for both reputation and group-based
cooperation, and analyse how specific social norms (i.e. rules to
assign reputations) can lead to varying levels of cooperation and
fairness. We investigate how a finite population of independent Q-
learning agents perform under different social norms. We observe
that while norms such as Stern-Judging sustain both cooperation
and fairness in populations of learning agents, other norms used to
judge in- or out-group interactions can lead to unfair outcomes.
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1 INTRODUCTION
Cooperation is a fundamental research topic across disciplines [6,
17]. While cooperative populations tend to thrive, individuals are
tempted to act selfishly, receiving the benefits of others’ cooperation
without exerting the effort themselves. The conundrum underlying
this interaction is evident if we formally translate it into the so-
called donation game, whereby a donor decides whether to pay a
cost 𝑐 to offer a benefit 𝑏 to a recipient. Assuming that 𝑏 > 𝑐 > 0,
this simple interaction illustrates the ubiquitous social dilemma of
altruistic cooperation. Understanding how to engineer cooperation
in these mixed-motive settings is a central challenge in multi-agent
systems research [3, 4, 15].
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Indirect reciprocity (IR) is one mechanism used to sustain coop-
eration [11, 13, 18]. With IR, agents are assumed to discriminate and
provide benefits based on previous interactions and reputations of
others. The rules that determine how such reputations are updated
(so-called social norms) encapsulate the moral judgements of what
constitutes a good or a bad action [12].

Although being a promising mechanism, applying IR in systems
of learning agents comes with some challenges. First, only a small
set of social norms (i.e., rules followed to assign reputations) are
able to stabilise cooperation in populations of homogeneous agents
[1, 12]. Secondly, it is not uncommon for distinct groups to exist
or emerge in a population, particularly when cooperation is condi-
tional on reputations [7, 19]. When social norms display in-group
bias or out-group prejudice, we may observe parochial cooperation
leading to inequality, as is widespread in many human systems [5].
It remains unclear how discrimination based on reputations might
be affected by discrimination based on group identities. Here we
address the following question: How to apply indirect reciprocity to
group-structured populations of learning agents to achieve high levels
of both cooperation and fairness?

We model a population of independent agents learning through
Q-learning. We find that fairness and cooperation are possible to
achieve if the right norm is chosen to judge actions.

2 MODEL
We consider well-mixed population of agents stratified into a minor-
ity and majority group, with size 𝑍𝑚 and 𝑍𝑀 respectively. Agents
interact by playing the donation game introduced previously.

To encourage cooperation we consider reputations and social
norms. Social norms are rules that determine agents’ reputations
after each game takes place. In our model, these rules may depend
on 1) the action taken by the donor, 2) the current reputation of
the recipient, and 3) whether the two agents are in the same group.
Following prior works on indirect reciprocity, all of these inputs
are binary: a donor has two actions, reputations are either “good”
or “bad” [11], and agents can be in the same or a different group.

An example of a social norm is SternJudging, which deems
that it is good to either defect against a bad agent or cooperate with
a good one, and that doing the opposite action in either case is bad
[14]. Another is SimpleStanding, stating that the only bad thing
to do is to defect against a good agent [16]. ImageScore assumes
that Cooperation is good, and defection is bad [10]. Shunning pos-
tulates that only cooperation with good opponents is good, and
all else is bad. Neither of these norms take into account the group
identity of agents. A norm that judges in-group interactions with
SternJudging and out-group interactions with SimpleStanding
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would imply a greater degree of strictness when judging interac-
tions where both agents are members of the same group.

We assume that an agent who intends to cooperate will some-
times defect with some probability 𝜖 , that third-party observers
using social norms to assign reputations can also err and assign
the opposite reputation than intended with probability 𝛿 and that
agents err likewise when retrieving others’ reputations with rate 𝜒 .

Agents decide to cooperate or defect according to a strategy/policy
(learned as detailed in Section 2.1). Strategies define, for each com-
bination of reputation and in/out-group, a corresponding action.
As such, the space of strategies consists of functions 𝜎 : {0, 1}2 →
{0, 1}. Notable strategies include AllD, which unconditionally re-
fuses to donate, Disc, which conditionally cooperates with good
agents and defects against bad ones, and AllC, which uncondition-
ally donates. So called “unfair” strategies may, for example, play
AllC with in-group members and play Disc with everyone else.

2.1 Reinforcement learning model
We model agents as independent tabular Q-learners. Formally, if
agent 𝑖 with meets agent 𝑗 who has group relation 𝑥 to agent 𝑖
and reputation 𝑦, then the action taken by 𝑖 (𝑎∗) is determined by
𝑎∗ = argmax𝑎∈{0,1} 𝑄𝑖 [𝑥,𝑦, 𝑎], where 𝑄𝑖 ∈ R3 is the Q-table of
agent 𝑖 and actions 0 and 1 correspond to defection and cooperation
respectively. In doing so, agent 𝑗 will receive payoff 𝑏 and agent 𝑖
will pay cost 𝑐 . If 𝑎∗ = 0 then 𝑏 = 𝑐 = 0. Agent 𝑗 will attribute this
payoff to the last action they took (𝑎) in context 𝑥 and 𝑦

𝑄 t+1
𝑖 [𝑥,𝑦, 𝑎

∗] ← (1 − 𝛼)𝑄𝑡
𝑖 [𝑥,𝑦, 𝑎

∗] − 𝛼𝑐 (1)

𝑄 t+1
𝑗 [𝑥,𝑦, 𝑎] ← (1 − 𝛼)𝑄

𝑡
𝑗 [𝑥,𝑦, 𝑎] + 𝛼𝑏 (2)

We start our simulations from randomly initialized 𝑄𝑖 values
and let agents adapt over time. Each simulation runs for 250,000
interactions and is repeated 50 times with different seeds.

3 RESULTS
We fix each possible social norm in a population of independent
reinforcement learning agents and we measure the cooperativeness
and fairness levels obtained in the long run, after agents adapt
their policies. The cooperativeness of a system is the probability
that in a uniformly sampled interaction the donor will cooperate.
The fairness of a system is the ratio between the average payoffs of
the worse off and better off group. This is akin to the demographic
parity ratio from fairness in supervised learning applications [9].
As shown in Figure 1, under a small set of norms agents can learn to
adopt policies such that high levels of cooperativeness and fairness
emerge, even in a population composed by a minority and majority
group. Stern-judging, a norm previously identified as leading to
high levels of cooperation [1, 14], can also here support high levels
of cooperation and fairness. Using Stern-judging to assess in-group
interactions and the more simple Image-score to assess out-group
interactions (i.e., Cooperation is Good, all else is Bad [10]) can
still steer agents to learn policies that are both cooperation and
fair; often, however, populations can end up in states where unfair
cooperation is learned and only the majority groups receives the
benefits of cooperation.
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Figure 1:With the proposedmodel we can classify each norm
regarding the long-term average cooperativeness and fair-
ness sustained in a population of agents independently adapt-
ing through Q-Learning. Here we show representative norms
that, when applied to assess in- and out-group interactions,
can lead to different levels of cooperativeness and fairness.
By manipulating a social norm determining how reputations
are assigned, we can affect not only the overall levels of coop-
eration but also the level of fairness in a population (i.e., the
balance in average payoffs obtained by two groups). Parame-
ters: 𝑏 = 10, 𝑐 = 1, 𝑍𝑀 = 45, 𝑍𝑚 = 5, 𝛼 = 0.1, 𝜖 = 𝛿 = 𝜒 = 0.01.

4 CONCLUSION
In this paper we show that indirect reciprocity allows for fair coop-
eration amongst group-structured agents. For this to happen, one
has to judiciously select social norms. Norms play a large part in
determining the stability and learnability of policies leading to a
fair and cooperative outcome. Stricter norms (like SternJudging)
allow for high levels of cooperativeness and fairness when agents
adapt through reinforcement learning.

By using the minimal and generic donation game, we have
demonstrated a proof of concept whose results may inform the
application of indirect reciprocity to more elaborate multi-agent
systems. That said, our simple framework motivates future work:
First, it has previously been shown that ad hoc group formation
may occur in spatial mixed-motive models [2] or complex networks
[7, 19]; here we assume static group identities, however investi-
gating learning dynamics with a changing group labels can, in the
future, inform how to sustain fair cooperation in scenarios where
group membership is dynamic. Second, our simple setup has the
advantage of allowing to perform an exhaustive analysis of each
norm. In more complex, sequential games where interactions are
indirect and outcomes extend in time [8], it is difficult to immedi-
ately assign a cost and benefit to actions, making it unclear which
actions deserve punishment. Future work can use the base model
presented here and adapt it to analyse cooperation and fairness in
more complex sequential environments.
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