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ABSTRACT
Restless multi-armed bandits (RMABs) generalize the multi-armed

bandits where each arm exhibits Markovian behavior and transi-

tions according to their transition dynamics. Solutions to RMAB

exist for both offline and online cases. However, they do not con-

sider the distribution of pulls among the arms. Studies have shown

that optimal policies lead to unfairness, where some arms are not

exposed enough. Existing works in fairness in RMABs focus heavily

on the offline case, which diminishes their application in real-world

scenarios where the environment is largely unknown. In the on-

line scenario, we propose the first fair RMAB framework, where

each arm receives pulls in proportion to its merit. We define the

merit of an arm as a function of its stationary reward distribution.

We prove that our algorithm achieves sublinear fairness regret in

the single pull case 𝑂 (
√
𝑇 ln𝑇 ), with 𝑇 being the total number of

episodes. Empirically, we show that our algorithm performs well

in the multi-pull scenario as well.
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1 INTRODUCTION
Restless Multi-Armed Bandits (RMABs) are a class of Multi-armed

Bandits where each arm has a Markov Decision Process (MDP)

associated with it. Each arm has its own states, actions, transition

dynamics, and reward functions. The arms transition from one state

to the next state, irrespective of whether they are pulled or not. It

is this restless nature of the arms that makes RMABs applicable to

many domains such as network scheduling [16], anti-poaching [19],

healthcare [14], etc. Recently, a lot of works have been using rest-

less bandits to model preventive interventions in public healthcare

scenarios [3, 5, 9, 10, 13] where an arm is modeled as the patient.

Multiple works have devised algorithms to find optimal policies

in RMABs. This includes both the offline setting, where the transi-

tion probabilities of each arm’s MDP are known [1, 24, 25], and the
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online setting, in which the transition probabilities are unknown [2–

4, 6, 7, 17, 22]. However, all these approaches focus only on finding

the optimal policy – leading to some arms being completely ig-

nored [18]. As in our running example where arms model patients,

this represents a major problem: the optimal policies would focus

only on patients who require the most interventions and ignore the

patients who rarely need interventions. However, in public health-

care, it becomes important to focus on all kinds of patients so as to

provide unbiased healthcare to society. Current work on fairness

in RMABs includes [5, 12, 15, 18]; these works assume that the

transition probabilities are known beforehand and construct their

policies based on this assumption. To our knowledge, only Li and

Varakantham [11] explore fairness in online RMABs; their fairness

notion ensures that each arm is pulled at least once every fixed

time period. We propose that arms should be pulled in proportion

to their merit, which is defined as the difference at steady state

when we always pull the arm compared to when we never pull the

arm. We call our notion of fairness as Merit Fair which is better

than the existing notions in online RMABs [11] because unlike the

fairness notion of Li and Varakantham [11] which simply classifies

arms as optimal and sub-optimal and then accordingly provides

fairness, Merit Fair instead pulls arms in proportion to their merit,

and ensures that sub-optimal arms with high merit and sub-optimal

arms with low merits receive different levels of exposure.

In this paper [21], for theoretical analysis, we primarily focus on

single pull settings for the following reasons. Meritocratic fairness

[23] has been designed for pulling a single arm at each round. It is

unclear how such merit-based fairness can be extended to multiple

pulls. However, our algorithm can be extended to multiple pulls

and we study its efficacy empirically. To the best of our knowledge,

we are the first one to extend the Fairness of Exposure [23] notion

to Restless bandits with theoretical guarantees.

2 PRELIMINARIES
An RMAB problem is defined by a set of 𝑁 independent arms.

Each arm 𝑖 ∈ [𝑁 ] is characterized by a Markov Decision Process

(MDP) given by (S,A,R, 𝑃𝑖 ) with S,A, and R : S −→ R denoting

the state space, action space, and reward function respectively.

𝑃𝑖 : S × A × S −→ [0, 1] is the transition probablity matrix for arm

𝑖 . In the traditional RMAB setting, each arm differs only by their

transition matrix 𝑃𝑖 . The states are assumed to be fully observable.

The action the decision-maker takes is governed by a policy 𝜋 .

The total number of episodes is 𝑇 , where a policy 𝜋𝑡 is fixed for

𝑡 ≤ 𝑇 , and is run for𝐻 timesteps, where𝐻 is the time horizon of an

episode. For each timestep ℎ ∈ 𝐻 in episode 𝑡 , the decision-maker

has to select 𝐾 ≤ 𝑁 arms according to 𝜋𝑡 , where 𝐾 is the budget.

Extended Abstract  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2474

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Figure 1: The first three plots show Regret vs. Time for different 𝐾 and 𝑁 settings on CPAP dataset. The last plot shows the
Regret with different 𝐾/𝑁 values for 𝑇 × 𝐻 = 2 × 10

6 timesteps.

In our setting, we assume S B {0, 1}, where 0 denotes bad

state and 1 denotes good state. There are two possible actions, i.e.

A B {1, 0}, indicating whether an arm is pulled or not respectively.

The arm receive a reward of 1 for being in the good state and 0

otherwise. Let us denote the true transitionmatrix for an arm 𝑖 as 𝑃∗
𝑖
.

We assume that 𝑃∗
𝑖
’s are non-degenerate, i.e., there exists an 𝜖 > 0

such that 𝜖 ≤ 𝑃∗
𝑖
(𝑠, 𝑎, 𝑠′) ≤ 1 − 𝜖 ∀𝑖 ∈ [𝑁 ], 𝑎 ∈ A, 𝑠, 𝑠 ∈ S′

. Let

𝜇∗
𝑖
denote the true reward of arm 𝑖 , which we define formally later.

Along a similar line to Wang et al. [23], let us define the Optimal

Fair Policy as 𝑃𝑟∗ (𝐾), where 𝑃𝑟∗
𝑖
(𝐾) is the probability that arm 𝑖 is

among the 𝐾 chosen out of the 𝑁 total arms. Observe that 𝑃𝑟∗
𝑖
(𝑁 )

= 1 and that 𝑃𝑟∗
𝑖
(1) = 𝜋∗

𝑖
, where 𝜋∗ is the probability distribution

of being chosen over the arms. Let 𝑔(·) be a non-decreasing merit

function that maps the reward of the arm to a positive value. Then,

for the optimal fair policy, we have

𝑃𝑟 ∗𝑖 (𝐾 )
𝑔 (𝜇∗

𝑖
) =

𝑃𝑟 ∗𝑗 (𝐾 )
𝑔 (𝜇∗

𝑗
) ∀𝑖, 𝑗 ∈ [𝑁 ].

Let 𝜋 = {𝜋𝑡 }𝑇
𝑡=1

be the policy learnt by our algorithm with 𝜋𝑡 being

the employed policy at episode 𝑡 . We define Fairness Regret 𝐹𝑅𝑇 as

the difference between the optimal fair policy 𝜋∗ and our policy

𝜋 up to episode 𝑇 . Mathematically, 𝐹𝑅𝑇 =
∑𝑇
𝑡=1

∑
𝑖∈[𝑁 ]

��𝜋∗
𝑖
− 𝜋𝑡

𝑖

��
.

Here, 𝜋𝑡
𝑖
denotes the probability of pulling an arm 𝑖 in episode 𝑡 .

3 PROPOSED SOLUTION
Wefirst define a reward that is based on steady state and is indicative

of how much intervention an arm requires. Consider the policy

discussed by Herlihy et al. [5] where each arm is pulled with some

fixed probability 𝑝𝑖 , i.e., 𝜋𝑃𝐹 : {𝑖 | 𝑖 ∈ [𝑁 ]} −→ [1 − 𝑝𝑖 , 𝑝𝑖 ]𝑁 . Let
us denote 𝑓 (𝑃𝑖 , 𝑝𝑖 ) to be the steady state probability of arm 𝑖 being

in state 1, when followed a policy 𝜋𝑃𝐹 . At steady state, we should

have 𝑓 (𝑃𝑖 , 𝑝𝑖 ) [(1−𝑝𝑖 )𝑃𝑖 (1, 0, 1) +𝑝𝑖𝑃𝑖 (1, 1, 1)] + (1− 𝑓 (𝑃𝑖 , 𝑝𝑖 )) [(1−
𝑝𝑖 )𝑃𝑖 (0, 0, 1) + 𝑝𝑖𝑃𝑖 (0, 1, 1)] = 𝑓 (𝑃𝑖 , 𝑝𝑖 ). The reward of an arm can

be naturally defined as: 𝜇𝑖 = 𝑓 (𝑃𝑖 , 1) − 𝑓 (𝑃𝑖 , 0) which represents

the benefit of pulling an arm in the long run as compared to the

loss the algorithm would have incurred if it had not pulled the arm.

As we are in an online setting, we also need to estimate the

true transition matrices 𝑃∗
𝑖
’s. We use the Upper Confidence Bound

(UCB) approach which maintains an optimistic bound on the true

transition matrix corresponding to each state-action-state [22]. Let

𝑁 𝑡
𝑖
(𝑠, 𝑎, 𝑠′) be the number of times (𝑠, 𝑎, 𝑠′) transition has been

observed for arm 𝑖 by episode 𝑡 . Further, we define 𝑁 𝑡
𝑖
(𝑠, 𝑎) =∑

𝑠′ 𝑁
𝑡
𝑖
(𝑠, 𝑎, 𝑠′). Then at episode 𝑡 , we estimate the true transition

matrix 𝑃∗
𝑖
(𝑠, 𝑎, 𝑠′) with empirical mean 𝑃𝑡

𝑖
(𝑠, 𝑎, 𝑠′) B 𝑁 𝑡

𝑖
(𝑠,𝑎,𝑠′ )

𝑁 𝑡
𝑖
(𝑠,𝑎) and

confidence radius 𝑑𝑡
𝑖
(𝑠, 𝑎) B

√︂
2 |S | ln(2 |S | |A |𝑁 𝑡4

𝛿
)

max{1,𝑁 𝑡
𝑖
(𝑠,𝑎) } where 𝛿 > 0 is

a user defined constant. We can now define the ball 𝐵𝑡 of possible

values of 𝑃∗ as 𝐵𝑡 = {𝑃 | ∥𝑃𝑖 (𝑠, 𝑎, ·) −𝑃𝑡𝑖 (𝑠, 𝑎, ·)∥1 ≤ 𝑑𝑡
𝑖
(𝑠, 𝑎) ∀𝑖, 𝑠, 𝑎}.

In particular, 𝐵𝑡
𝑖
is the ball of possible values of 𝑃∗

𝑖
at episode 𝑡 for

some particular arm 𝑖 . It can be proven that 𝑃∗ belongs to this ball

with high probability [22].

MF-RMAB calculates the estimated reward of each arm 𝑖 as

𝜇𝑡
𝑖
= 𝑓 (𝑃+,𝑡

𝑖
, 1) − 𝑓 (𝑃+,𝑡

𝑖
, 0) for an episode 𝑡 . Then the probability

distribution over arms being chosen 𝜋𝑡 is given by 𝜋𝑡
𝑖
=

𝑔 (𝜇𝑡
𝑖
)∑

𝑗 𝑔 (𝜇𝑡𝑗 )
.

MF-RMAB then samples 𝐾 arms without replacement from 𝜋𝑡 . We

show the following theoretical result:

Theorem 3.1. MF-RMAB incurs O(
√
𝑇 ln𝑇 ) fairness regret for

sufficiently large 𝑇 .

4 EXPERIMENTAL RESULTS
The dataset used for the experiments is the Markov model of CPAP

treatment given by Kang et al. [8] and adapt their three-state model

into two states in a similar fashion to [5, 12].We compareMF-RMAB

with an "Optimal" baseline, where in each episode 𝑡 , Optimal policy

pulls the arms with the 𝐾 highest values for 𝜇𝑡
𝑖
. We use 𝛿 = 0.01

and set the merit function 𝑔(𝜇) = 𝑒𝑐𝜇 . We set 𝑐 = 3 and in line

with our non-degeneracy assumption on 𝑃∗, we clip the transition

probabilities in the range [𝜖, 1 − 𝜖] with 𝜖 = 0.01. The results are

averaged over 30 independent runs with different seed values. We

run the experiments for 𝑇=10k episodes and 𝐻=200 timesteps per

episode for a total of𝑇 ×𝐻 = 2× 10
6
timesteps.For 𝐾 > 1 cases, we

use the same definition of fairness regret as for 𝐾 = 1 cases. The

source code is available on Github [20].

The first three plots of Figure 1 show the various trends of fair-

ness regret across different values of 𝑁 and 𝐾 . We can see that

MF-RMAB incurs a sublinear regret, while Optimal is unable to

learn a fair policy and exhibits linear regret. The rightmost plot

of Figure 1 shows the variation of total regret 𝐹𝑅𝑇 ,𝑇 = 10k over

increasing
𝐾
𝑁

ratio. We can observe that the minima is around

𝐾
𝑁

≈ 0.5. Therefore, we conclude that increasing 𝐾 does not neces-

sarily help in learning the transition probabilities faster, and can

end up increasing the regret instead.
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