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ABSTRACT

Participatory budgeting (PB) has been receiving significant atten-

tion lately both in theory and practice. PB is broadly classified into

two categories: divisible PB and indivisible PB. Divisible PB imposes

no constraint on the amount allocated to each project, whereas the

indivisible PB assumes that each project is associated with a cost

and the project must either be funded in full or not funded. In this

work, we propose a rich PB model that encompasses many settings

of PB as special cases. Some of such settings include the case where

some projects are divisible and some are indivisible and the case

where the cost of each project may belong to a continuum range

of values. We propose various welfare and fairness objectives and

verify the computational complexity of each of them. We prove ex-

perimentally that even the computationally hard objectives become

tractable in practice. Also, we propose greedy approximation algo-

rithms for such objectives and prove that our algorithms achieve

nearly optimal solutions on real world PB datasets.
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1 MOTIVATION

Participatory Budgeting (PB) is a democratic process that aggre-

gates the preferences of stakeholders to determine an allocation of a

divisible resource (aka budget) to a set of alternatives (aka projects).
Depending on the nature of projects, PB is classified into two cate-

gories: divisible PB and indivisible PB. Divisible PB allows for the

allocation of any portion of the budget to each project. Conversely,

in indivisible PB, each project is associated with a fixed cost and

must receive an allocation equal to either its fixed cost or zero.

Both divisible PB [1, 6, 8] and indivisible PB [2, 4, 5, 7, 9, 11–15,

17, 18, 20, 23] are well-studied in the social choice literature. In this

paper, we introduce the model of Hybrid Participatory Budgeting,
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which encapsulates divisible PB and indivisible PB, among many

others, as special cases. In our model, we go beyond assigning

a single fixed cost to each project and instead accommodate a

continuous range of values known as the cost domain of the project.

We assume that every project 𝑝 is associated with a cost domain

denoted by [l𝑝 , h𝑝 ]. The project 𝑝 must either receive no amount

or must receive an amount belonging to the interval [l𝑝 , h𝑝 ]. Each
voter 𝑖 approves a set 𝐴𝑖 of projects that she likes.

Hybrid PB can be employed to represent many existing PB sce-

narios as well as novel ones. Few such examples include the ones

where: (i) some projects are divisible and some are indivisible (an

open question posed by [3]) (ii) a minor deviation from the esti-

mated cost of a project is allowed (iii) fairness bounds are imposed

on the allocations to divisible projects (e.g., lower bound on a dona-

tion value to ensure tax relief).

In this work, we introduce hybrid PB, formulate mathematical

objectives related to utilitarian welfare and fairness in hybrid PB,

and propose PB rules which calculate solutions that are either

optimal or nearly optimal with respect to these objectives. Note

that Sreedurga [19] also permits each project to assume multiple

possible costs, but the possible values form a discrete set. This work,

on the other hand, assumes the cost domain to be a continuum range

of values, thereby becoming incomparable with [19].

2 FORMAL MODEL

Let 𝑁 denote the set {1, 2, . . . , 𝑛} of 𝑛 voters. We use P to denote

the set {𝑝1, 𝑝2, . . . , 𝑝𝑚} of𝑚 projects and 𝑏 ∈ [1,∞) to denote the

available budget. Each project 𝑝 ∈ P is associated with an interval

D𝑝 = [l𝑝 , h𝑝 ] ⊆ [0,∞) referred to as the cost domain of 𝑝 . Every

voter 𝑖 ∈ 𝑁 approves a subset of projects 𝐴𝑖 ⊆ P. A hybrid PB

instance ⟨𝑁,P, 𝑏, (D𝑝 )𝑝∈P , (𝐴𝑖 )𝑖∈𝑁 ⟩ is usually denoted by 𝐼 .

An allocation is a𝑚-sized vector 𝑥 ∈ R𝑚+ denoting the amount

allocated to each project. An allocation 𝑥 is said to be feasible if∑
𝑝∈P

𝑥 (𝑝) ≤ 𝑏 and 𝑥 (𝑝) ∈ D𝑝 ∪{0} for every 𝑝 ∈ P. For the sake

of convenience, with a slight abuse of notation, we use 𝑥 (𝑆) to
denote

∑
𝑝∈𝑆

𝑥 (𝑝) for a subset of projects 𝑆 ⊆ P. Let F denote the

set of all feasible allocations.

Definition 1 (Hybrid PB Rule). Given a hybrid PB instance
𝐼 , a hybrid PB rule R outputs a feasible allocation 𝑥 ∈ F .

3 WELFARE

In this section, we propose two utilitarian hybrid PB rules, each

based on a distinct utility notion. The first rule, R𝑐 , assumes that

every approved funded project yields a unit utility to the voter. In
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contrast, the second rule R𝑎 considers the utility from a project to

be equal to the amount allocated to the project.

Definition 2 (R𝒄 rule). Given a hybrid PB instance 𝐼 , R𝑐 rule
outputs an allocation𝑥 ∈ F thatmaximizes

∑
𝑖∈𝑁

|𝑝 ∈ 𝐴𝑖 : 𝑥 (𝑝) ≥ l𝑝 |.

Definition 3 (R𝒂 rule). Given a hybrid PB instance 𝐼 , R𝑎 rule
outputs a feasible allocation 𝑥 ∈ F that maximizes

∑
𝑖∈𝑁

∑
𝑝∈𝐴𝑖

𝑥 (𝑝).

Proposition 1. Given a hybrid PB instance 𝐼 , an allocation output
by R𝑐 can be computed in polynomial time. Conversely, it is NP-hard
to compute an allocation output by R𝑎 .

3.1 Fixed Parameter Tractability of R𝒂 Rule

max

∑︁
𝑝∈P

|𝑖 ∈ 𝑁 : 𝑝 ∈ 𝐴𝑖 | · 𝑥𝑝

subject to

∑︁
𝑝∈P

𝑥𝑝 ≤ 𝑏 (1)

l𝑝 𝑦𝑝 − 𝑥𝑝 ≤ 0 ∀𝑝 ∈ P (2)

𝑥𝑝 − h𝑝 𝑦𝑝 ≤ 0 ∀𝑝 ∈ P (3)

𝑥𝑝 ≥ 0 ∀𝑝 ∈ P (4)

𝑦𝑝 ∈ {0, 1} ∀𝑝 ∈ P (5)

Theorem 3.1. Given a hybrid PB instance 𝐼 , computing an alloca-
tion output by R𝑎 is in FPT with respect to𝑚.

The above theorem follows from the fact that a mixed integer lin-

ear program is fixed parameter tractable with respect to the number

of variables [16]. Despite being computationally hard theoretically,

many times in practice, MILP is solvable very quickly in a matter

of seconds, or at most a few minutes, using one of the many avail-

able MILP solvers. On executing R𝑎 on 300 real-world PB datasets

[10], it took 26.6 seconds on an average for each dataset. Note that

we modified indivisible PB instance to be a hybrid PB instance by

allowing the allocation to deviate from the estimated cost by 10%.

3.2 Greedy Algorithm for R𝑎 rule

We now propose a polynomial-time greedy algorithm for R𝑎 . The

algorithm simply sorts the projects in the non-increasing order of

their approval scores and sequentially allocate an amount as high

as possible to each project in that order. Our algorithm is found to

perform remarkably well on the datasets by achieving an output

that yields a welfare of at least 90% of the optimal value on all the

300 datasets. Particularly, it achieves at least 96% of the optimal

welfare on 275 datasets and more than 99% for 231 of them.

4 FAIRNESS

In this section, we introduce a family of fair hybrid PB rules. Fairness

in PB is typically based on the concept of share, which is a lower

threshold on the amount that needs to be allocated in favor of a

voter or a group of voters. Share of a voter, 𝛼 , is assumed to be the

least amount required to satisfy a voter. That is, we say that a voter

𝑖 is satisfied if 𝑥 (𝐴𝑖 ) ≥ 𝛼 . Existing literature on PB study various

specific values of share such as
𝑏
𝑛 [1, 6] and

|𝐴𝑖 |
𝑚 𝑏 [8] for each

𝑖 ∈ 𝑁 . Moreover, several works in PB [21, 22] consider share to be

a parameter of the rule. Following them, we take 𝛼 as a parameter.

Definition 4 (R𝒇 ,𝜶 rule). Given a hybrid PB instance 𝐼 , R𝑓 ,𝛼

rule outputs a feasible allocation𝑥 ∈ F thatmaximizes
∑
𝑖∈𝑁

1𝑥 (𝐴𝑖 )≥𝛼 .

Proposition 2. Given a hybrid PB instance 𝐼 , it is NP-hard to
compute an allocation output by R𝑓 ,𝛼 .

4.1 Fixed Parameter Tractability

max

∑︁
𝑖∈𝑁

𝑧𝑖

subject to

∑︁
𝑝∈P

𝑥𝑝 ≤ 𝑏 (6)

l𝑝 𝑦𝑝 − 𝑥𝑝 ≤ 0 ∀𝑝 ∈ P (7)

𝑥𝑝 − h𝑝 𝑦𝑝 ≤ 0 ∀𝑝 ∈ P (8)

𝑧𝑖 · 𝛼 ≤
∑︁
𝑝∈𝐴𝑖

𝑥𝑝 ∀𝑖 ∈ 𝑁 (9)

𝑥𝑝 ≥ 0 ∀𝑝 ∈ P (10)

𝑦𝑝 ∈ {0, 1} ∀𝑝 ∈ P (11)

𝑧𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝑁 (12)

Theorem 4.1. Given a hybrid PB instance 𝐼 , computing an alloca-
tion output by R𝑓 ,𝛼 is in FPT with respect to𝑚 + 𝑛.

Proof of the above is similar to that of Theorem 3.1. On executing

R𝑓 ,𝛼 on the PB datasets [10] with 𝛼 = 𝑡𝑏
𝑛 (𝑡 is a constant input by

the user), it took 42.3 seconds on an average for each dataset. Share

value in the code can easily be modified to any other value without

effecting the time complexity of the execution.

4.2 Greedy Algorithm

We propose a greedy algorithm for R𝑓 ,𝛼 which iteratively proceeds

as follows: at each iteration, we compute the project𝑤𝑝 that satisfies

most number of previously unsatisfied voters, allocate to 𝑤𝑝 the

minimum amount required to satisfy all those new voters, mark it,

and repeat until all the projects are marked. Our algorithm is found

to perform remarkably well on the datasets by achieving an output

that yields a fair coverage of at least 90% of the optimal value on all

the 300 datasets. Particularly, it achieves at least 95% of the optimal

value on 274 datasets and more than 98% for 226 of them.

5 SUMMARY

We introduced the hybrid PB model and proposed welfare and

fairness objectives. Wemodeled our computationally hard problems

as MILP and verified their fixed parameter tractability. We also

proposed greedy algorithms and proved empirically that they give

nearly optimal solutions on the real-world PB datasets. It needs to

be highlighted that, although all the results in Section 4 assume the

voters to have same share parameter, they can easily be extended

to the case where every voter 𝑖 has a different share parameter 𝛼𝑖 .

Such a change does not affect the computational complexity or the

execution time in our empirical results.
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