
Efficient Size-based Hybrid Algorithm for Optimal Coalition
Structure Generation

Extended Abstract

Redha Taguelmimt
Univ Lyon, UCBL, CNRS, INSA Lyon,
Centrale Lyon, Univ Lyon 2, LIRIS,

UMR5205
F-69622 Villeurbanne, France
redha.taguelmimt@gmail.com

Samir Aknine
Univ Lyon, UCBL, CNRS, INSA Lyon,
Centrale Lyon, Univ Lyon 2, LIRIS,

UMR5205
F-69622 Villeurbanne, France
samir.aknine@univ-lyon1.fr

Djamila Boukredera
University of Bejaia, Faculty of Exact

Sciences, Laboratory of Applied
Mathematics

06000 Bejaia, Algeria
djamila.boukredera@univ-bejaia.dz

Narayan Changder
TCG Centres for Research and

Education in Science and Technology
Kolkata, India

narayan.changder@tcgcrest.org

Tuomas Sandholm
Carnegie Mellon University

Strategic Machine, Inc.
Strategy Robot, Inc.

Optimized Markets, Inc.
Pittsburgh, USA

sandholm@cs.cmu.edu

ABSTRACT
Coalition Structure Generation (CSG) involves dividing agents into
coalitions in such a way as to coordinate them into solving problems
together efficiently. In this paper, we revisit the CSG problem and
propose a new search method that introduces an offline phase to
speed up the search process, where the best coalition sets to search
are preprocessed. These sets are calculated only once regardless of
the coalition values and can be reused each time a CSG instance is
to be solved. Then our search in the online phase combines dynamic
programming with integer partition-based search in a novel way.

KEYWORDS
Coalition formation; Coalition structure generation; Preprocessing;
Integer partition graph

ACM Reference Format:
Redha Taguelmimt, Samir Aknine, Djamila Boukredera, Narayan Changder,
and Tuomas Sandholm. 2024. Efficient Size-based Hybrid Algorithm for
Optimal Coalition Structure Generation: Extended Abstract. In Proc. of the
23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 3 pages.

1 PROBLEM FORMULATION
The design of algorithms for CSG has been an active research
topic in AI since the 1990s [1–13]. This paper presents an exact
algorithm for the CSG problem that outperforms the fastest state-of-
the-art algorithms. While ODP-IP [4] and BOSS [3], which combine
IDP [5] and IP [7], are very efficient for many value distributions,
there are instances where they fail to produce the exact results

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

within a reasonable time. A CSG problem defined on a set of 𝑛
agents A = {𝑎1, 𝑎2, ..., 𝑎𝑛} is a problem of size 𝑛. A coalition C is
any non-empty subset of A. In CSG, a characteristic function 𝑣

assigns a real value to each coalition. This value determines the
efficiency of the coalition. A coalition structure CS is a partition of
the set of agents A into disjoint coalitions. Formally, given a set of
non-empty coalitions {C1, C2, ..., C𝑘 }, CS = {C1, C2, ..., C𝑘 }, where
𝑘 = |CS| and CS satisfies the following constraints:

⋃𝑘
𝑗=1 C𝑖 = A

and for all 𝑖, 𝑗 ∈ {1, 2, ..., 𝑘} where 𝑖 ≠ 𝑗 , C𝑖 ∩ C𝑗 = ∅. The value
of CS is assessed as: 𝑣 (CS) = ∑

C∈CS 𝑣 (C) . The goal in CSG is to
find the optimal solution CS∗ = argmaxCS∈Π (A) 𝑣 (CS) . The Integer
Partition (IP) graph [7] (see Figure 1) divides the solutions into
subspaces that are represented by integer partitions of 𝑛.

2 THE CESAR ALGORITHM
Our method is a hybrid solution that combines dynamic program-
ming and integer partition based techniques. It consists of an offline
preprocessing phase and an online search phase.

The offline phase computes the best set of coalition sizes that
determine the coalitions to evaluate in the online phase, regardless
of their values, to speed up the search in the IP graph (see Figure
1). The offline phase is performed once for each CSG problem size
irrespective of the online phase. The principle of the offline phase is
to choose certain coalition sizes to evaluate, which can be illustrated
on the IP graph as follows. For example with ten agents, dividing a
coalition of size 2 into two coalitions of size 1, when searching for
the solutions (i.e. in the online phase), corresponds to an upward
movement in this graph from the node [2, 8] to the node [1, 1, 8] or
from [1, 1, 2, 6] to [1, 1, 1, 1, 6], etc. By choosing to split in this graph
a subset of integers starting from the bottom node, a subset of nodes
in the IP graph become reachable from the bottom node. From this,
we observe that to search at least a certain percentage of the solution
subspaces, several sets of coalition sizes could be considered to reach
that percentage, with a different runtime for each set of sizes due
to the different cost of the explored sizes. To do this, we propose

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2492

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

1, 1, 1, 1, 1, 1, 1, 1, 1, 1

1, 1, 1, 1, 1, 1, 1, 1, 2

1, 1, 1, 1, 1, 1, 1, 3 1, 1, 1, 1, 1, 1, 2, 2

1, 1, 1, 1, 1, 1, 4 1, 1, 1, 1, 1, 2, 3 1, 1, 1, 1, 2, 2, 2

1, 1, 1, 1, 1, 5 1, 1, 1, 1, 2, 4 1, 1, 1, 1, 3, 3 1, 1, 1, 2, 2, 3 1, 1, 2, 2, 2, 2

1, 1, 1, 1, 6 1, 1, 1, 2, 5 1, 1, 1, 3, 4 1, 1, 2, 2, 4 1, 1, 2, 3, 3 1, 2, 2, 2, 3 2, 2, 2, 2, 2

1, 1, 1, 7 1, 1, 2, 6 1, 1, 3, 5 1, 2, 2, 5 1, 1, 4, 4 1, 2, 3, 4 2, 2, 2, 4 1, 3, 3, 3 2, 2, 3, 3

1, 1, 8 1, 2, 7 1, 3, 6 2, 2, 6 1, 4, 5 2, 3, 5 2, 4, 4 3, 3, 4

1, 9 2, 8 3, 7 4, 6 5, 5

10

Figure 1: A ten-agent example of the integer partition graph.
(a) SDP evaluates the coalitions of size 𝑠 ∈ BS1={2, 4, 6, 10}.
The blue edges represent the splittings of coalitions of size
𝑠 ∈ BS1. The red edges represent the skipping of coalitions
of size 𝑠 ∈ {3, 5, 7, 8, 9}. After finishing the evaluation process,
SDP will have fully searched, with the set BS1, all the sub-
spaces, except the red ones, which are not connected to the
bottom node through a series of blue edges.
(b) SIP evaluates the subspaces starting with themost promis-
ing ones and prunes out those that have no chance of improv-
ing the solution.When SDP finishes evaluating the coalitions
of size 2, all the green nodes are searched, meaning that SIP
does not need to search them. When SDP finishes evaluating
the coalitions of size 4, all the blue nodes alongwith the green
ones are now searched and SIP does not need to search them
either. Finally, when SDP finishes evaluating the coalitions
of size 6, all the nodes of the graph are searched, except the
red nodes, meaning that SIP no longer needs to search the
nodes already searched by SDP. The remaining red nodes
are searched by either SIP or SDP when considering the set
BS2={2, 3, 4, 5, 6, 10} in parallel.

and use the Size Extraction Algorithm (SEA). First, SEA starts by
computing the time required to evaluate the coalitions of each size.
Then, SEA computes the best coalition size set that searches at
least 70% of the solution subspaces with minimum runtime. The
70% is a hyperparameter that we optimized. The remaining 30%
are searched with a second technique that we detail in the online
phase. SEA yields the best size set by evaluating all possible size
sets and selecting the best one. For example, with 10 agents, SEA
returns BS1 = {2, 4, 6, 10} that searches 39 subspaces out of 42.

The online phase computes the optimal solution using the CE-
SAR (Coalition-size Extraction and Subspace seArch Redesign) al-
gorithm, which combines a Size-based Dynamic Programming al-
gorithm (SDP) with a Size-based Integer-Partition algorithm (SIP).

SDP consists of two parts that run in parallel to increase per-
formance and optimality. Each part of SDP evaluates the different
ways of splitting a set of coalitions. The first part evaluates all the
coalitions whose sizes belong to the best coalition size set obtained
from the offline phase. The second part of SDP evaluates all the

20 21 22 23 24252627282930

100

102

26%

59%27%
35%

33%
32%

37%16%24%
26%

26%

26%

60%27%
38%

42%
38%33%15%

25%
28%

28%

Number of agentsTim
ed

iffe
ren

ce
(in

sec
on

ds) Normal

ODP-IP time - CESAR time
BOSS time - CESAR time

20 21 22 23 24252627282930
10−1

101

103

20% 25%10%
12%

29%24%
13%

32%
24%

32%
27%

38% 30%17%
18%

38%32%

29%

71%67%41%41%

Number of agentsTim
ed

iffe
ren

ce
(in

sec
on

ds) Gamma

ODP-IP time - CESAR time
BOSS time - CESAR time

Figure 2: Time difference between CESAR and ODP-IP, and
CESAR and BOSS, for a range of agents between 20 and 30.
The percentages indicate the time gain achieved by CESAR.

coalitions of size 𝑠 ∈ BS2 = {2, ...,
⌊ 2𝑛
3
⌋
, 𝑛} to guarantee search-

ing all the solution subspaces. [5] proved that evaluating the set
of coalitions of size 2 to

⌊ 2𝑛
3
⌋
for a problem of size 𝑛 is sufficient

to guarantee finding the exact result. SDP computes the optimal
coalition structure by evaluating all possible ways of splitting each
coalition C of a selected size into two coalitions and checks whether
it is beneficial to split C or not. For each coalition, the splitting
that generates its optimal value along with this value are stored
in two tables, the partition table 𝑃𝑡 and the value table 𝑉𝑡 , respec-
tively. This allows the algorithm to compute the optimal coalition
structure, once it has finished evaluating all selected coalitions, in
a recursive manner starting with the grand coalition. The splitting
operations of SDP can be visualized in the IP graph as upward
movements through edges. Figure 1.a details the SDP algorithm.

SIP is based on the IP graph and considers each node as a sub-
space of solutions. This makes it possible to compute the upper
bounds on the quality of the best solution in each subspace. By com-
paring the bounds of the subspaces, SIP explores themost promising
ones. SIP progressively improves the solutions by exploring the
solutions of the subspaces and eliminating the subspaces that do
not have a better upper bound than the last best solution found.

The search in SIP is combined with SDP. When SDP finishes
evaluating all the coalitions of size 𝑥 , a certain number of subspaces
become reachable from the bottom node. Hence, they are fully
searched by SDP, which finds the optimal coalition structure among
them. This means that SIP does not need to search them anymore,
thereby pruning them out. Figure 1.b details the CESAR algorithm.

3 EMPIRICAL EVALUATION
We evaluated the performance of our algorithm on several value
distributions given different numbers of agents (20 to 27). Figure 2
shows the performance of CESAR compared to ODP-IP and BOSS.
All the codes are written in Java. We see that for all distributions,
CESAR performs better than ODP-IP and BOSS. For example, for
the Normal distribution with 30 agents, there is a difference of 15
minutes between CESAR and ODP-IP and a difference of 17 minutes
with BOSS. The percentage of improvement of CESAR compared to
ODP-IP and BOSS is 26% and 28%, respectively. Moreover, we tested
the algorithms on a total of 15 value distributions and observed
that CESAR is always faster than ODP-IP.

ACKNOWLEDGMENTS
Tuomas Sandholm is supported by the Vannevar Bush Faculty
Fellowship ONR N00014-23-1-2876, National Science Foundation
grants RI-2312342 and RI-1901403, andARO awardW911NF2210266.

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2493

REFERENCES
[1] Narayan Changder, Samir Aknine, and Animesh Dutta. 2019. An Imperfect Algo-

rithm for Coalition Structure Generation. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 33. 9923–9924.

[2] Narayan Changder, Samir Aknine, Sarvapali D Ramchurn, and Animesh Dutta.
2020. ODSS: Efficient Hybridization for Optimal Coalition Structure Generation..
In Proc. of AAAI. 7079–7086.

[3] Narayan Changder, Samir Aknine, Sarvapali D. Ramchurn, and Animesh Dutta.
2021. BOSS: A Bi-directional Search Technique for Optimal Coalition Structure
GenerationwithMinimal Overlapping (Student Abstract). In Proc. of AAAI, Vol. 35.
15765–15766. https://ojs.aaai.org/index.php/AAAI/article/view/17879

[4] Tomasz Michalak, Talal Rahwan, Edith Elkind, Michael Wooldridge, and
Nicholas R Jennings. 2016. A hybrid exact algorithm for complete set parti-
tioning. Artificial Intelligence 230 (2016), 14–50.

[5] Talal Rahwan andNicholas R Jennings. 2008. An improved dynamic programming
algorithm for coalition structure generation. In Proc. of the 7th international joint
conference on Autonomous agents and multiagent systems-Volume 3. International
Foundation for Autonomous Agents and Multiagent Systems, 1417–1420.

[6] Talal Rahwan, Tomasz P Michalak, Michael Wooldridge, and Nicholas R Jennings.
2015. Coalition structure generation: A survey. Artificial Intelligence 229 (2015),
139–174.

[7] Talal Rahwan, Sarvapali D Ramchurn, Nicholas R Jennings, and Andrea Giovan-
nucci. 2009. An anytime algorithm for optimal coalition structure generation.
Journal of artificial intelligence research 34 (2009), 521–567.

[8] Tuomas Sandholm, Kate Larson, Martin Andersson, Onn Shehory, and Fernando
Tohmé. 1999. Coalition structure generation with worst case guarantees. Artificial
Intelligence 111, 1 (1999), 209–238.

[9] Redha Taguelmimt, Samir Aknine, Djamila Boukredera, and Narayan Changder.
2022. Subspace-Focused Search Method for Optimal Coalition Structure Genera-
tion. In 2022 IEEE 34th International Conference on Tools with Artificial Intelligence
(ICTAI). 1435–1440.

[10] Redha Taguelmimt, Samir Aknine, Djamila Boukredera, and Narayan Changder.
2023. Anytime Index-Based Search Method for Large-Scale Simultaneous Coali-
tion Structure Generation and Assignment. In Proceedings of the 26th European
Conference on Artificial Intelligence, ECAI-23. 2282–2289. Main Track.

[11] Redha Taguelmimt, Samir Aknine, Djamila Boukredera, Narayan Changder, and
Tuomas Sandholm. 2023. Optimal Anytime Coalition Structure Generation
Utilizing Compact Solution Space Representation. In Proceedings of the Thirty-
Second International Joint Conference on Artificial Intelligence, IJCAI-23. 309–316.
Main Track.

[12] Feng Wu and Sarvapali D Ramchurn. 2020. Monte-Carlo Tree Search for Scalable
Coalition Formation. In Proc. of IJCAI. 407–413.

[13] D Yun Yeh. 1986. A dynamic programming approach to the complete set parti-
tioning problem. BIT Numerical Mathematics 26, 4 (1986), 467–474.

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2494

https://ojs.aaai.org/index.php/AAAI/article/view/17879

	Abstract
	1 Problem Formulation
	2 The CESAR Algorithm
	3 Empirical Evaluation
	Acknowledgments
	References

