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ABSTRACT
Large-scale multi-agent pathfinding (MAPF) presents significant

challenges in several areas. As systems grow in complexity with a

multitude of autonomous agents operating simultaneously, efficient

and collision-free coordination becomes paramount. Traditional

algorithms often fall short in scalability, especially in intricate sce-

narios. Reinforcement Learning (RL) has shown potential to address

the intricacies of MAPF; however, it has also been shown to struggle

with scalability, demanding intricate implementation, lengthy train-

ing, and often exhibiting unstable convergence, limiting its practical

application. In this paper, we introduce Heuristics-Informed Multi-

Agent Pathfinding (HiMAP), a novel scalable approach that employs

imitation learning with heuristic guidance in a decentralized man-

ner. We train on small-scale instances using a heuristic policy as

a teacher that maps each single agent observation information to

an action probability distribution. During pathfinding, we adopt

several inference techniques to improve performance. With a sim-

ple training scheme and implementation, HiMAP demonstrates

competitive results in terms of success rate and scalability in the

field of imitation-learning-only MAPF, showing the potential of

imitation-learning-only MAPF equipped with inference techniques.
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1 INTRODUCTION
Multi-Agent Pathfinding (MAPF) entails finding collision-free paths

for a group of agents while minimizing makespan or flowtime

[14]. MAPF is a domain with several practical applications in our

increasingly automated world, including warehouse robotics [16],

aviation [10], and digital gaming [7] scenarios.

Centralized strategies have offered solutions by reducing MAPF

to other familiar problems, e.g., ILP [17] and SAT [15], or employing

search-based algorithms, e.g., Conflict-Based Search (CBS) [13]

and its improved versions ECBS [3] and EECBS [6]. Yet, scalability

remains hard to obtain, especially as the number of agents increases.

Reinforcement Learning (RL) approaches [2, 5, 8, 9, 12] offer

another way to solve the MAPF problem by treating it as a sequen-

tial decision-making problem rather than a centralized planning

problem. However, this approach often involves intricate implemen-

tation and lengthy training and often exhibits unstable convergence.

Contributions. In this paper, we propose Heuristics-Informed

Multi-Agent Pathfinding (HiMAP), a novel method that relies only

on imitation learning (IL) through which the neural network model

learns to act from heuristics expert solutions. Our contributions

include: 1)We formulate theMAPF problem as an imitation learning

problem where the model learns to choose actions by imitating

expert decisions. 2) We propose a simple yet effective training

scheme based on imitation learning of small-scale solutions from

heuristics solvers. 3) We introduce several inference techniques

to improve the performance. 4) We demonstrate the potential of

imitation-learning-only MAPF equipped with inference techniques.

2 HIMAP
HiMAP trains with the help of heuristics guidance in IL manner.

During pathfinding, HiMAP first gathers observations from all

agents, where each observation comprises four distinct channels.

Subsequently, these observations are fed into the neural network.

Leveraging four distinct inference techniques, the neural network

produces action for all agents. As a result, the locations of all agents

are updated, facilitating a transition to the subsequent state.

Network Architecture and Observation Space. We adopt the

same neural network as PRIMAL [12], while eliminating the Value

and Blocking output head. Similar to PRIMAL, we use a partially

observable grid world as the environment. Each agent 𝑖 at location

𝑣𝑡
𝑖
has a four-channel observation 𝑜𝑡

𝑖
in a 9 × 9 Field of View (FOV)
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centered around itself, plus a 3 × 1 vector pointing from its own

position to its goal. At each time step 𝑡 , agents act in the grid world

either to move to an adjacent vertex or stay at the current vertex.

Heuristic Guidance. We train the model with the help of heuris-

tic expert guidance in an imitation learning (IL) manner. We use

EECBS [6] to generate a series of expert collision-free paths on

randomly generated environments. In the generated heuristic ex-

pert paths, each location of a single agent 𝑖 at time 𝑡 , i.e., 𝑣𝑡
𝑖
, can be

viewed as a decision point, and the decision 𝑎𝑡
𝑖
∗
according to the

expert paths is either up, down, left, right, or stay still. HiMAP is

trained by minimizing the MSE loss between the model output 𝑎𝑡
𝑖

given the input observation 𝑜𝑡
𝑖
, and the expert action decision 𝑎𝑡

𝑖
∗
.

Inference Techniques. 1) Preventing Re-Visit: During the pathfind-
ing, we find that sometimes agents cannot plan well due to their

limited FOV. This will leave some agents oscillating around dead

ends and never reaching their goals. Hence, we introduce a history

recording scheme that records the history of visited locations and

prevents the agents from repetitively re-visiting visited locations

during the last few time steps.

2) Softmax Temperature Adaptation: We found that planning with

only greedy inference does not perform well. Therefore, we adjust

the softmax temperature of the final layer of the model such that it

can increase or decrease the amount of exploration. During training,

the temperature is set to 𝜏 = 1. During pathfinding, we can adjust

the value of 𝜏 to induce more or less exploration of the map, which

can be beneficial for the agent to get unstuck.

3) Treating Completed Agents as Obstacles: In this work, we adopt

the stay at target setting, as defined in [14]. Thus, agent overlap-

ping with its goal can be effectively treated as an obstacle from the

model’s perspective. Therefore, we propose changing themap repre-

sentation for completed agents into obstacles to improve the model

performance effectively. We observe that results are improved com-

pared with the situation without this modification, especially with

many agents.

4) Conflict-Free Planning: We consider four types of conflicts:

swapping conflict [14], vertex conflict [14], conflict with static ob-

stacles, and out-of-bound conflict. During action sampling, the

sampled action may guide agents to take invalid actions, leading to

one of the conflicts. We implement a two-stage technique to correct

invalid actions to enable conflict-free planning. Before sampling,

we identify the actions that may result in agents colliding with

obstacles or going out of bounds and mask these actions by setting

their probability to 0 so they do not influence decision-making.

After sampling, the sampled actions may still result in swapping
conflict or vertex conflict. Similar to [8], we employ simple rules to

avoid these two conflicts. If these two conflicts happen, the related

agents’ states are recursively recovered until no conflicts exist.

3 EXPERIMENTS
Training Data Generation. We generate 100 random square maps

with sizes 40 × 40 and obstacle density 0.3, and another 100 maps

with sizes 80 × 80 and the same obstacle density. For each map,

we create five scenario files [14], each containing 4, 8, 16, 32, or 64

start-goal location pairs, resulting in a total of 1000 scenario files.
We solve all 1000 Multi-Agent Path Finding (MAPF) problems us-

ing EECBS with a suboptimality factor of 1.2. The training dataset
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Figure 1: Success rate of HiMAP and ablatedmodels. Baseline:
HiMAP without preventing re-visit (No History) and treating
completed agents as obstacles (No TCAO).

consists of pairs (𝑜𝑡
𝑖
, 𝑎𝑡

𝑖
∗), generated from expert solutions. Gener-

ating all expert paths takes less than a minute on an Intel Core

i7-6850K. Other hyperparameters include a learning rate starting

at 5 × 10
−5
, decreasing by 80% every eight epochs, and a total of

35 training epochs. Training takes approximately 100 minutes on a

single NVIDIA TITAN X GPU with 12GB of VRAM. Reproducible

source code is available on GitHub
1
.

We follow [4] and define the success rate as the average per-

centage of agents reaching the destination without collisions out

of the total number of agents within the maximum allowed time

steps. The maximum allowed time step during testing is 256 for

the 40 × 40 map and 386 for the 80 × 80 map. For pathfinding, we

use history size 𝐻 = 5, i.e., the agent is banned from re-visiting

the location it has visited in the last five time steps, and softmax

temperature 𝜏 = 2.

The success rate is shown in Fig. 1, demonstrating the power of

HiMAP with pure IL equipped with inference techniques. We also

show the success rate of ablated models to verify the effectiveness

of proposed inference techniques. We believe that the results can

be further improved by using a larger training dataset, which will

be left for future work.

4 DISCUSSION AND CONCLUSION
To the best of our knowledge, [1] is the only paper that employs

pure IL to train neural network solvers for MAPF, using a dataset

based on single-agent shortest paths [11]. However, these paths

do not guarantee collision-free paths for agents or allow agents to

observe each other’s behavior. In contrast, equipped with inference

techniques, HiMAP uses collision-free paths generated by EECBS,

which better represents the MAPF solution in dynamic settings.

We propose HiMAP, an IL approach that employs heuristics

expert paths to solve MAPF problems, whose implementation and

training are easier and less costly compared with RL-based solvers.

The training dataset only contains paths on relatively small-scale

MAPF problems, making it easy to collect expert paths with existing

heuristics solvers. We further introduced several inference tech-

niques to boost performance during evaluation. We demonstrate

HiMAP’s success rate in different environments with high obstacle

density, showcasing the potential of imitation-learning-only MAPF

equipped with inference techniques.

1
https://github.com/kaist-silab/HiMAP
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