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ABSTRACT
The inherently time-dependent dynamics which underly the neu-
ronal spiking communication, are ubquitous throughout brain, and
yet are not fully understood. Likewise time-based mechanisms are
underdeveloped in the field of Machine and Reinforcement Learn-
ing (RL) [7]. The complexity-rich and multi-dimensional dynamics
observed in the brain offer potential advancements in Machine
Learning (ML), and development of Artificial Generalized Intelli-
gence.

It is in our interests to model known time-mechanisms of neu-
ronal spiking communication, and reproduce the emergent prop-
erties of complex timing and learning in assemblies. If neuronal
temporal dynamics can be understood, a new field of possibilities
will open for in-situ models which learn in complex real-time envi-
ronments. A key challenge for these models is correctly identifying
associations of actions and stimulus at variable time separations. In
this article, we bring the flexible time representation mechanisms
from neuroscience to the field of automata and RL, to explore its
potential.
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1 INTERVAL TIMING
Interval Timing (IT): the internal process by which animals perceive
and estimate the duration of time between events. IT functions
as an internal clock that helps gauge how much time has passed
and enables organisms to not know what to do but when to do
it, even in the absence of cues. IT is crucial for causal inference,
decision making, and estimation of reward value; consequently, it is
fundamental to understanding how RL operates in living organisms
[7]. IT is the subject of extensive research within neuroscience, and
multiple models have been developed to explain how ensembles
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of neurons operating at millisecond scale can flexibly scale their
activity to represent a wide range of intervals scaling from seconds
to several minutes.

Researchers have devised several behavioral experiments to ac-
cess IT. Perhaps the most widely used is the Fixed-Interval (FI) task
[8] [2], where an animal is conditioned to perform an action (e.g.,
press a lever) after a target interval of time (the criterion time)
to receive a reward. Neurophysiological studies have shown that
this scaling property is present in the activity of brain cells. This
reveals the potential for flexible, efficient coding. By implementing
these computational models of timing in automata, we would ex-
pect an artificial agent with similar timing properties. That is, able
to reproduce the activity patterns observed in animal behavior in
this task. Namely temporal rescaling of the neuronal receptive
fields: changes in the mean peak and variance of motor neuron
activity over time, when learning a new criterion time.

2 THE SBF MODEL
The Striatal Beat Frequency (SBF) model [4] [5], is a neuroscientific
theory for explaining IT in the brain. The SBF encodes associations
of events in time, on the state in the neural ensemble with a reward
mediated mechanism. These make the model apt for use in artificial
neural networks and RL frameworks. The SBF model has been
implemented with real-time asynchronous learning systems such
as Spiking Neural Networks and Spike-Timing Dependent-Plasticity
[9]. The SBF model is well-supported by computational simulations
[1] and has been considered as a viable model for flexible and
distributed time-information encoding.

To the best of our knowledge, the SBF model has not yet been
introduced to the ML domain. If successfully introduced, the SBF
model can be applied to problems of periodic event learning in
real-time environments, e.g. Web-Crawling Optimization [3]. The
original SBF model as described by the authors was created in sim-
ulation with a neurobiologically plausible ensemble of thousands
of neurons [1]. In introducing this method to ML, we simplify the
model in a naïve RL-automata framework. We represent large neu-
ral population activities with single units. These units are active
with unique, fixed, oscillating activity. Using multiple units (“oscil-
lators”), each with a unique period to its oscillation. The activity
on the oscillators is then projected to an “executive” unit, which
“decides” whether to act or not. The weighted strengths between
the oscillators and the executive unit allow the periodic activity to
act as predictive stimuli of meaningful events in the environment.
Each time the executive unit acts, the weights change in response
to the presence or absence of a reward. This is done continuously
until the weights converge to a solution. The weights reflect the
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contribution each oscillator makes towards predicting the correct
periodicity. Because SBF model doesn’t rely on a centralized "clock",
nor explicitly keep time information in memory. Instead, SBF lever-
ages distributed, ongoing sensiomotor activity, to make and keep
inferences about time [1]. This is consistent with the perception
that timing mechanisms are not a singular, modular aspect of the
brain, but foundational to all neuronal communication [2].

3 THE SBF-AUTOMATA
We introduce the SBF-Automata (SBF-A) model, a naïve RL model
which replicates features of the SBF. The SBF-A is composed of two
main parts: 1. the oscillator block, containing a set of oscillator
units, each of which "peaks" in activity at a unique periodicity; and
2. the executive unit, which integrates the activity of the oscillator
block and decides whether to act or not. Where the probability of
taking action is the summed weights of active units: 𝑃 =

∑
𝑤𝑎 .

The oscillator units act discretely; unit activity is "on" at a partic-
ular time-step in the cycle coinciding with its period, and otherwise
"off". For our experiments, the oscillators’ cycle periods are selected
from a uniform distribution with a minimum period zero, to a max-
imum period of 0.9 times the criterion time (to prevent having an
oscillator with an exact solution). The "zero-period" oscillator acts
as a broad inhibitory signal, which votes against acting on every
time-step. This absorbs excess weight in the system, which could
force hyperactivity.

When an action is taken in a correct time-step (corresponding
to the cyclic criterion time), a feedback signal triggers a “reward”
update to the weights. Oscillators whose activity contributed to
taking the action have their weight (𝑤𝑎) strengthened,𝑤𝑎 = 𝑤𝑎 +
𝛼
∑
𝑤𝑖

𝑛𝑎
; while oscillators who were inactive have their weight (𝑤𝑖 )

weakened𝑤𝑖 = 𝑤𝑖 × (1 − 𝛼). Additionally, to balance exploration
and exploitation, whenever the executive unit takes action on an
incorrect time-step, weights to the oscillators that contribute to the
wrong action are penalized and others are strengthened. Both of
these methods enable faster convergence towards a solution.

3.1 Experiment
We implemented a version of the FI task [2], in which the environ-
ment consists of discrete time-steps, and the reward is periodically
available on time-steps corresponding to the criterion time interval.
The SBF-A must learn the periodicity using only feedback from
previous actions. Experiments used oscillator sets of sizes: [100,
600, 900] and criterion times: [1000, 6000, 10,000]. Results for each
set of conditions were averaged over 20 experiments.

3.2 Results
For each interval of the criterion time, we compare the total number
of actions taken against the number of correct actions taken as a
measure of accuracy, and cross compare performance for different
initializations of oscillator size and criterion times (Figure 1). In a
broader trend, the reward retrieved seems to depend on the average
actions taken. As the size of the oscillator set increases, both the
reward and the action rate decrease drastically; with the variance
of the action rate increasing with larger criterion times. While this
might imply instability, the distribution of oscillator weights over
the lifetime of each experiment shows the automata consistently

arrives at a unique solution for each set of conditions. We include
an example in Figure 2 The final distribution of the weights prefers
a few select oscillators, while the majority of weights approach
zero.

Figure 1: Blue: Average amount of reward recovered for each interval. Orange:
Average number of actions per total of each interval. Rows are the size of the
oscillator set. Columns are the criterion time (𝑇𝑐 ) used.

Figure 2: Oscillator weights over the lifetime of experiment (𝑇𝑐 = 10000, set
size: 900). Oscillator periods are denoted by color, the legend is the top-ten
highest weighted oscillators at the end of the experiment, sorted by weight.

3.3 Conclusion
These results show that the SBF-A is not particularly effective in the
sub-thousands of oscillators regime. We even see a trend opposite
of our expectation, where increasing the number of oscillators in
a set leads to less reward being recovered on average. However,
the decreased and varied average number of actions per interval
in experiments with larger oscillator sets could indicate a more
"accurate" (at least in the sense of when to not act) performance.

This is not entirely unexpected as we use extremely small popula-
tions of oscillators with nonoverlapping domains (comparatively [1]
uses 15,000, normally distributed oscillators). We still see promise
in that the SBF-A still arrives at some unique solution for each
problem; however, as the oscillator activity is discrete, this causes
the SBF-A to favor a few large oscillators with periods which evenly
divide into multiples of the criterion time.

This model is oversimplified for the sake of clarity and cannot
fully exhibit the performance we would expect to see from other
SBF simulations [1] [6]. Even so, we can observe it to be sensitive
to the conditions of the environment and capable of "learning" in
the weight distribution. Further development of the SBF-A will use
phasic oscillator activity domains to emulate large neuron popula-
tions.
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