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ABSTRACT
In the full version of this paper, we investigate under which con-

ditions normal-form games are (guaranteed) to be strategically

equivalent. First, we show for 𝑁 -player games (𝑁 ≥ 3) that (a) it is

NP-hard to decide whether a given strategy is a best response to

some strategy profile of the opponents, and that (b) it is co-NP-hard

to decide whether two games have the same best-response sets.

We then turn our attention to equivalence-preserving game

transformations. It is a widely used fact that a positive affine (lin-

ear) transformation of the utility payoffs neither changes the best-

response sets nor the Nash equilibrium set. We investigate which

other game transformations also possess either of the following

two properties when being applied to an arbitrary 𝑁 -player game

(𝑁 ≥ 2): (i) The Nash equilibrium set stays the same; (ii) The best-

response sets stay the same.

For game transformations that operate player-wise and strategy-

wise, we prove that (i) implies (ii) and that transformations with

property (ii) must be positive affine. The resulting equivalence

chain highlights the special status of positive affine transformations

among all the transformation procedures that preserve key game-

theoretic characteristics.
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INTRODUCTION
When faced with a strategic interaction with other agents, it is

helpful for AI systems to detect when the current situation can be

treated in the same way as another strategic game that has already

been dealt with in the past. Du [13] has shown that this is generally

a computationally hard task for the case of Nash equilibria. As we
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will show, this task is also computationally hard in the case of best

responses.

Therefore, one may instead take an alternative approach for the

currently encountered strategic interaction and generate a space of

many other situations that share key game-theoretic characteristics,

with the goal to find an instance in that space that can be analyzed

and solved efficiently. More concretely, a classic tool that emerged

in the beginnings of game theory has been to transform a given

game into other strategically equivalent games that are easier to

analyze [38]. Positive affine (linear) transformations (PATs) have

been particularly useful in that regard [3, 5, 24]. To illustrate PATs,

consider any 2-player normal-form game in which the players’

utilities are measured in dollars. Then, the best-response strategies

of player 1 do not change if her utility payoffs are multiplied by a

factor of 5. Moreover, they also do not change if 10 dollars are added

to all outcomes that involve player 2 playing his, say, third strategy.

More generally, PATs have the power to rescale the utility payoffs

of each player and to add constant terms to the utility payoffs of a

player 𝑖 for each strategy choice k−𝑖 of her opponents.
Through leveraging PATs, previous work significantly extended

the applicability of efficient Nash equilibrium solvers [2, 4, 11, 37]

to classes beyond those of zero-sum and rank-1 games
1
[20, 22, 28].

The key to the success of these extensions was the well-known

property of PATs that they do not change the Nash equilibrium set

and best-response sets when being applied to an arbitrary game.

In this paper, we investigate whether there are other (efficiently

computable) game transformations with that same property.

PRELIMINARIES
Normal-Form Games. Write [𝑛] := {1, . . . , 𝑛} for any 𝑛 ∈ N. A
normal-form multiplayer game 𝐺 specifies (a) an integer number

of players 𝑁 ≥ 2, (b) a set of pure strategies 𝑆𝑖 = [𝑚𝑖 ] for each
player 𝑖 where𝑚𝑖 ≥ 2 is integer, and (c) the utility payoffs for each

player 𝑖 given as a function 𝑢𝑖 : 𝑆
1 × . . . × 𝑆𝑁 → R.

We refer to the set of (strategy) profiles in𝐺 as 𝑆 := 𝑆1× . . .×𝑆𝑁 .

Throughout this paper (and unless explicitly specified otherwise)

all considered multiplayer games shall have the same number of

players 𝑁 and the same set of profiles 𝑆 . Hence, any game𝐺 will be

determined by its utility functions {𝑢𝑖 }𝑖∈[𝑁 ] . The players choose
their strategies simultaneously, they cannot communicate with

each other, and their goal is to maximize their personal utility. As

usual, we allow the players to randomize over their pure strategies,

1
A 2-player game, represented by its payoff matrices 𝐴, 𝐵 ∈ R𝑚×𝑛

, is said to have

rank 1 if rank(𝐴 + 𝐵) = 1.
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which extends the strategy sets to all probability distributions Δ(𝑆𝑖 )
over 𝑆𝑖 . A tuple s = (𝑠1, . . . , 𝑠𝑁 ) ∈ Δ(𝑆1) × . . . × Δ(𝑆𝑁 ) =: Δ(𝑆)
is called a (mixed) profile

2
in 𝐺 . A player then optimizes for her

expected utility 𝑢𝑖 (s) :=
∑
k∈𝑆 𝑠

1

𝑘1
· . . . · 𝑠𝑁

𝑘𝑁
· 𝑢𝑖 (k).

We define k−𝑖 , s−𝑖 , and Δ(𝑆−𝑖 ) analogously to k, s, and Δ(𝑆),
except that player 𝑖’s part is removed from it. The best-response set

of player 𝑖 to an opponents’ profile s−𝑖 ∈ Δ(𝑆−𝑖 ) is then defined

as BR𝑢𝑖 (s−𝑖 ) := argmax𝑡𝑖 ∈Δ(𝑆𝑖 )
{
𝑢𝑖 (𝑡𝑖 , s−𝑖 )

}
, where the notation

𝑢𝑖 (𝑠𝑖 , s−𝑖 ) stresses how player 𝑖 can only influence her own strategy

when it comes to her payoff. A profile s ∈ Δ(𝑆) is called a Nash

equilibrium in𝐺 if for every player 𝑖 ∈ [𝑁 ] we have 𝑠𝑖 ∈ BR𝑢𝑖 (s−𝑖 ).
By Nash’s result [29], any such multiplayer game 𝐺 admits at least

one Nash equilibrium.

Game Transformations. Let us define the two game transforma-

tion concepts that we study in this paper.

Definition 1. A positive affine transformation (PAT) specifies for

each player 𝑖 a real-valued scaling parameter 𝛼𝑖 > 0 and real-valued

translation constants𝐶𝑖
:= (𝑐𝑖k−𝑖 )k−𝑖 ∈𝑆−𝑖 for each pure profile of the

opponents. The PAT 𝐻PAT can then take any game 𝐺 = {𝑢𝑖 }𝑖∈[𝑁 ]
and transform it into game 𝐻PAT (𝐺) = {𝑢′

𝑖
}𝑖∈[𝑁 ] with utility func-

tions 𝑢′
𝑖
: 𝑆 → R, k ↦→ 𝛼𝑖 · 𝑢𝑖 (k) + 𝑐𝑖k−𝑖 .

Definition 2. A separable game transformation 𝐻 specifies for

each player 𝑖 a map 𝐻 𝑖
:=

{
ℎ𝑖k : R → R

}
k∈𝑆 of functions for

each pure profile k. The transformation 𝐻 can then take any game

𝐺 = {𝑢𝑖 }𝑖∈[𝑁 ] and transform it into game 𝐻 (𝐺) = {𝐻 𝑖 (𝑢𝑖 )}𝑖∈[𝑁 ]
with utility functions 𝐻 𝑖 (𝑢𝑖 ) : 𝑆 → R, k ↦→ ℎ𝑖k

(
𝑢𝑖 (k)

)
.

Separability intuitively means that the transformed game 𝐻 (𝐺)
has the same number of players 𝑁 and the same profile set 𝑆 as

the original game 𝐺 , and that the utility payoff of player 𝑖 in 𝐻 (𝐺)
from pure profile outcome k is only a function of the utility payoff

from that same player in that same pure profile outcome in 𝐺 . We

discuss in the full version of this paper why it is sensible from a

computational perspective to restrict our attention to this class

of game transformations. We illustrate the richness of this in the

following example.

Example 3. Consider the 2 × 2 bimatrix games, that is, the case

of 𝑁 = 2 players each with |𝑆𝑖 | = 2 strategies. A PAT may then, for

example, transform such a game (𝐴, 𝐵) into the game

𝐴′, 𝐵′ =
(
2𝑎11 + 10 2𝑎12 − 5

2𝑎21 + 10 2𝑎22 − 5

)
,

(
1

2
𝑏11

1

2
𝑏12

1

2
𝑏21 −

√
3

1

2
𝑏22 −

√
3

)
.

A separable game transformation can, for example, instead trans-

form (𝐴, 𝐵) into the game

𝐴′′, 𝐵′′ =
(
−2𝑎11 + 10 𝑎5

12

𝑒𝑎21 0

)
,

(
|𝑏11 | sign(𝑏12)√︁
|𝑏21 | arctan(𝑏22)

)
.

It is a well-known fact that PATs do not change the best responses

(and hence, not the Nash equilibrium set, either), no matter what

game 𝐺 they are applied to. We prove with Theorem 7 that the

separable game transformation example above does not always

preserve these game characteristics. In fact, each of the functions

within𝐴′′
and 𝐵′′ already single-handedly violates a PAT structure.

2
Not to be confused with a correlated strategy: In our notation, Δ(𝑆 ) itself is not a
simplex of high dimension but only the product of 𝑁 lower-dimensional simplices.

Definition 4. A separable game transformation 𝐻 (resp. map 𝐻 𝑖
)

is said to universally preserve Nash equilibrium sets (resp. best

responses) if for all games 𝐺 = {𝑢𝚤}𝚤∈[𝑁 ] the transformed game

𝐻 (𝐺) has the same Nash equilibrium set as 𝐺 (resp. the same best-

response sets as 𝐺 , i.e., BR𝐻 𝑖 (𝑢𝑖 ) (s
−𝑖 ) = BR𝑢𝑖 (s−𝑖 ) for all profiles

s−𝑖 ∈ Δ(𝑆−𝑖 ) of the opponents).

RESULTS
Best Responses in Many-Player Games. We investigate the

computational complexity of problems involving best-response

strategies. First, we consider the problem of deciding whether a

(mixed) strategy of a player is ever a best response to some mixed

profile of the opponents. This is related to rationalizable strategies
[7, 30], a concept based on the idea that a rational player should

eliminate any strategy that is not a best response to some belief

over what her opponents may play.

Proposition 5. It is NP-hard to decide, given a 3-player normal-
form game, whether there exist mixed strategies r and s of P2 and P3

such that the first pure strategy of P1 is a best response to (r, s).

Next, we turn to best-response equivalence.

Theorem 6. It is co-NP-hard to decide whether two 3-player
normal-form games have the same best-response sets.

Preserving Transformations. We give two equivalent charac-

terizations of PATs that highlight their special status among game

transformations: PATs are the only separable game transformations

that always preserve the Nash equilibrium set or, respectively, the

best-response sets.

Theorem 7. Let 𝐻 be a separable game transformation. Then:

𝐻 universally preserves Nash equilibrium sets

↔ for each player 𝑖 , map 𝐻 𝑖 universally preserves best responses

↔ 𝐻 is a positive affine transformation.

The novel part about Theorem 7 is the downwards implication

chain. We may circumvent this result by considering non-separable

game transformations, as discussed in the full version of this paper.

The space of preserving transformations may also increase if we

are only interested in transforming a specific subclass of 𝑁 -player

games (provided by, e.g., domain knowledge). For a general treat-

ment as done in this paper, it would be preferred if such a subclass

still contained "most" games.

CONCLUSION
When faced with a strategic interaction it can be highly beneficial

to consider equivalent variations of it that are easier to analyze.

In the full version of this paper, we shed light on why PATs have

become the go-to transformation method for that purpose, rein-

forcing their standing as the standard off-the-shelf approach. The

current literature on game theory and on decision making in AI

are lacking methods to detect or generate strategically equivalent

games, and we hope that our results can serve as guidance to the

development of any such detection or generation toolkit.
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