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ABSTRACT

Multi-agent deep reinforcement learning (MADRL) often struggles
to learn strongly coordinated tasks, as performance depends not
only on one agent’s behavior but rather on the joint behavior of
multiple agents. In this context, a group of agents can benefit from
actively exploring different joint strategies to determine the most
efficient one. In this paper, we propose an approach for reward-
ing strategies where agents collectively exhibit novel behaviors.
We present JIM (Joint Intrinsic Motivation), a multi-agent intrin-
sic motivation method that rewards joint trajectories based on a
centralized measure of novelty. We show how JIM can be used to
improve state-of-the-art MADRL methods in a highly coordinated
task, demonstrating the crucial role of coordinated exploration.
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1 INTRODUCTION

While MADRL methods are able to solve increasingly more complex
tasks [7, 10, 14, 16], they still struggle in setups that require a high
degree of coordination between agents. Strongly coordinated tasks
can be seen as multi-agent exploration problems, where the objec-
tive is to find a specific coordinated strategy through very sparse
positive reward signals. Such hard exploration problems have been
a challenge for classical reinforcement learning algorithms that use
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Figure 1: Architecture for Joint Intrinsic Motivation. A single
module (JIM) generates the intrinsic reward for all agents,
based on the joint observation.

random exploration strategies (e.g., e-greedy) [2, 11]. Moreover, the
multi-agent setting makes the exploration task even harder, as some
local behavior may appear trivial and worthless from an agent’s
point of view, while it is actually valuable from the perspective of
the whole multi-agent system (MAS).

We propose to solve this issue by inciting agents to explore new
coordinated behaviors with a joint intrinsic motivation (JIM) mech-
anism (depicted in Figure 1). JIM takes inspiration from single-agent
intrinsic motivation methods [1, 3, 4, 12, 13, 17] to define a metric
for measuring novelty of joint observations. This metric is used as
an intrinsic reward that motivates agents to coordinately explore
their environment. Intrinsic motivation has already been used in
multi-agent settings [5, 6, 8, 15], but previous methods always com-
pute localized intrinsic rewards and rarely study exploration of the
environment. With JIM, we propose the first approach that uses
joint observations in an intrinsic motivation algorithm to incite
coordinated exploration.

2 METHOD

Following previous works on intrinsically motivated exploration [1],
we design a novelty metric that combines two exploration criteria
working at different timescales. First, the life-long exploration cri-
terion N1 Ec captures how novel is the current observation with
respect to all observations since the beginning of training. This
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Figure 2: Experiments in the coordinated placement task. (A) Screenshot of the environment, showing the colored landmarks
and the two agents. (B) Results of training the three variants of QMIX, with training curves (mean and standard deviation for
11 runs each) on the left and performance of all independent runs at the last iteration of training on the right. Dashed lines
indicate different levels of strategy. Example trajectories for each of these strategies are shown in (C).

criterion, inspired by NovelD [17], motivates agents to search for
never-experienced parts of the state space. Second, the episodic ex-
ploration criterion Nggc captures the difference between the current
observation and all previous observations in the current episode,
following an elliptical bonus defined in [4]. This incites agents to
have diverse trajectories. See the full version of this paper for more
details on Ny gc and Nggc!l.

Our Joint Intrinsic Motivation (JIM) algorithm uses these
two criteria to reward agents with the novelty of the consecutive
joint observations o; = {Ui}osisN and oy41:

M
'}, (0¢,0¢+1) = N LEC(04, 0441) X NEgC(041). (1)
Therefore, at each time step, agents receive the augmented reward
ry = rfx Ly ﬁrt] IM, with the extrinsic reward from the environment

réX! and the hyper-parameter f§ controlling the weight of r,] ™ This
intrinsic reward exploits centralized information during training
to motivate coordinated exploration of the joint-observation space.
Thus, it can be used to augment any MADRL algorithm that fits
in the centralized training with decentralized execution (CTDE)
paradigm.

3 EXPERIMENTS

To study how JIM helps multi-agent learning, we use the Multi-
agent Particle Environment (MPE) [9] and design a coordination
task. The coordinated placement scenario, shown in Figure 2A, has
two sets of three colored landmarks. The reward given at each time
step depends on the placement of the two agents on the landmarks:
two agents capturing both red landmarks gives +10, both on blue
gives +2, both on yellow gives +1, and only one agent on either blue
or yellow gives +0.5. Blue and yellow landmarks act as deceptive
positions requiring only one agent to generate a small reward.
Careful exploration of the environment will allow agents to see
that red landmarks are the optimal choice.

In this setup, we implement JIM with the state-of-the-art algo-
rithm QMIX [14]. We compare this new algorithm, termed QMIX+]JIM,
with both the original QMIX with no intrinsic motivation and with
a variant using local intrinsic motivation only (QMIX+LIM). LIM
uses the same reward definition as JIM (see Eq.1), but it takes as
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input the local observations instead of the joint observations. There-
fore, each agent has its own intrinsic reward related to its local
observations.

Results are shown in Figure 2B and demonstrate the importance
of coordinated exploration. QMIX alone always goes for either blue
or yellow landmarks. This indicates that without actively exploring
the environment, QMIX falls into the deceptive rewards trap and
is unable to find the optimal strategy. QMIX+LIM seems slightly
better than QMIX on average, but the individual run performance
shows that LIM arguably performs worse. While two runs manage
to find the optimal strategy, LIM often performs poorly with only
one agent on a blue or yellow landmark. This demonstrates that
exploring the space of local observations can be helpful, but can
also mislead agents into focusing on local immediate rewards. JIM
helps QMIX to find the optimal strategy more often, with more
than half of the runs where the optimal strategy is learned. When
agents do not find the optimal strategy, they stick with the best sub-
optimal strategy with both agents on blue. This shows the benefits
of actively looking for novel joint observations. As they contain all
the information to understand the sparse reward signals, exploring
the joint-observation space allows to better learn the task.

4 DISCUSSIONS

In this paper, we present an algorithm for joint intrinsic motivation
(JIM) that can be used to enhance any MADRL algorithm in the
CTDE paradigm. To the best of our knowledge, this is the first
approach that rewards agents for exploring the joint observation
space. We demonstrate that this is crucial to more reliably solve
strongly coordinated tasks. In further experiments (see full paper!),
we show that these results hold with more agents and present
an ablation study that showcases the need for combining the two
exploration criteria presented in Section 2. Overall, we think that
these results should promote the value of using joint observation
for computing intrinsic rewards in multi-agent setups.
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