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ABSTRACT
Relational reasoning has become an important concept in machine
learning and has seen notable progress in its methods like graph
neural networks, which highlight the value of capturing intricate
relational patterns. While it has shown promise in single-agent re-
inforcement learning, its potential in the multi-agent landscape re-
mains largely uncharted. Our work aims to bridge this gap, demon-
strating the advantages of integrating deep relational learning into
multi-agent reinforcement learning. We do so by introducing an
actor-critic architecture for centralized learning and decentralized
execution that uses relational graph neural networks to imbue a
spatial inductive bias. Empirical results highlight improved sample
efficiency and asymptotic performance against strong baselines in
cooperative tasks with significant spatial complexity.
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1 INTRODUCTION
In reinforcement learning (RL), solving tasks successfully often
requires knowledge of the connection between the agent and the
environment objects. However, traditional RL techniques often
focus on isolated states and actions, encountering challenges in en-
vironments characterized by rich relational structures. Recognizing
this gap, some works aim for a more robust understanding of envi-
ronments by infusing RL with relational reasoning [2–4, 8, 14, 17].
While most of the efforts have been conducted in single-agent
settings, multi-agent systems seem to be an even more promis-
ing candidate: they require algorithms that can reason about the
evolving interplay between agents as well as environment objects.
These relationships are multifaceted. On one hand, spatial relations
concern the physical positions and orientations of agents relative
to each other and objects in the environment. On the other hand,
non-spatial relations can arise from communication protocols, task
dependencies, or shared goals. Most of the related multi-agent
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reinforcement learning (MARL) research focuses on inter-agent
communication [9, 12, 18], not fully addressing spatial reasoning.
However, spatial relations provide a key environmental context
by representing relationships fundamental to learning the task.
These relations are not limited to interactions between agents but
extend to relationships with all entities that populate the environ-
ment. Modeling this type of relational information can be highly
beneficial for crafting effective strategies.

We make the following key contributions: (a) we propose a novel
multi-agent actor-critic architecture incorporating spatial relational
inductive biases through relational graph networks; (b) we bench-
mark our algorithm on 3 different collaborative tasks; (c) we com-
pare against state-of-the-art MARL baselines, demonstrating com-
petitive gains in sample efficiency and asymptotic performance.

2 METHODOLOGY
Our objective is to design a multi-agent relational actor-critic archi-
tecture (MARC) that integrates a relational reasoning component
into the learning process. To realize this, we carefully make specific
design choices as described below.

2.1 Relational Observation Encoder
We hypothesize that it is sufficient to only consider the entities
relevant to the game dynamics in our graph representation, empha-
sizing the relation between entities and their attributes. Accordingly,
we assume an observation 𝑜𝑖 , from which positions and attributes
of the agents and environment objects can be extracted.

In line with methods applied in the single-agent literature [8], we
propose that enforcing a spatial inductive bias, a structure inherent
in many environments, provides superior performance and sample
efficiency. Hence, we employ a graph-based representation with
multiple, directional relations. Such a graph is formally defined
as G = (V, E,R, 𝑍 ). Given 𝑁 agents and 𝑀 objects, we define
the set of entities asV = {𝑣1, . . . , 𝑣𝑁 , 𝑣𝑁+1, . . . , 𝑣𝑁+𝑀 }. Moreover,
entities in this graph have associated entity features, detailed by𝑍 ∈
R𝑑×|V | , where 𝑑 > 0 denotes the dimensionality of the features.

Each edge (𝑎, 𝑟, 𝑏) ∈ E is defined based on spatial rules, forming
the set of relations R ∋ 𝑟 , which are derived from the absolute
positions (𝑥𝑎, 𝑦𝑎) and (𝑥𝑏 , 𝑦𝑏 ) of two entities 𝑎 and 𝑏. We find that
a sufficient spatial inductive bias to complete most tasks is when
agents are aware of whether entities are left, right, top, bottom,
adjacent or aligned to one another.

To learn a relational representation of the observation that in-
corporates the connection between the objects, we employ RGCN
[15] updates on our constructed graph, as it is adept at dealing
with multiple relations. Under this framework, we produce updated
entity representations of the entity features 𝑍 , influenced by their
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respective, relation-specific neighbors. With 𝑧𝑖 ∈ R𝑑 being the en-
tity features for each entity 𝑖 ∈ V , the entity representations are
updated as 𝑧′

𝑖
= 𝜎

( ∑
𝑟 ∈R

∑
𝑗∈N𝑟 (𝑖 ) |N𝑟 (𝑖) |−1𝑊𝑟𝑧 𝑗 +𝑊0𝑧𝑖

)
, with

𝜎 an element-wise non-linear activation function. The employed
aggregation function uses relation-specific weight matrices𝑊𝑟 and
an auxiliary weight matrix𝑊0 brings in prior entity information.
N𝑟 (𝑖) defines the relation-specific neighbors of entity 𝑖 and the ag-
gregation process is normalized by the number of relation-specific
neighbors |N𝑟 (𝑖) |.

After updating the entity features, we obtain a learned feature
matrix 𝑍 ′ that we pass through a feature-wise pooling layer to
obtain observation encodings 𝑒 (𝑜𝑖 ) = max-pool(𝑍 ′), where 𝑍 ′

implicitly depends on 𝑜𝑖 .

2.2 Multi-Agent Relational Actor-Critic
Given the shared encoder for observations, we can feed the resulting
relational representation into the MARL procedure. We implement
the relational component within the critic to allow agents to share
the relational observation encoder during training. Analogous to
MAAC [7], each of the 𝑁 agents possesses their own critic and
policy network. Each critic is defined as 𝑄𝜓𝑖

(𝑜𝑖 , 𝑎) = 𝑓𝑖 (𝑒 (𝑜𝑖 ), 𝑎),
where 𝑓𝑖 is a 2-layered dense neural network, receiving an obser-
vation encoding 𝑒 (𝑜𝑖 ) and collective actions 𝑎 = (𝑎1, . . . , 𝑎𝑁 ). 𝜓𝑖
represents the shared parameters from 𝑒 and individual dense layers
𝑓𝑖 for each critic. The critics are optimized jointly to minimize the
regression loss

L𝑄 (𝜓 ) =
𝑁∑︁
𝑖=1
E(𝑜𝑖 ,𝑎,𝑟𝑖 ,𝑜 ′𝑖 )∼𝐷

[
(𝑄𝜓𝑖

(𝑜𝑖 , 𝑎) − 𝑦𝑖 )2], (1)

𝑦𝑖 = 𝑟𝑖 + 𝛾E𝑎′∼𝜋𝜃
[
𝑄𝜓𝑖

(𝑜′𝑖 , 𝑎
′) − 𝛼 log𝜋𝜃𝑖 (𝑎

′
𝑖 |𝑜

′
𝑖 )
]
,

where 𝛾 is the discount factor and 𝐷 represents the replay buffer.
Following the paradigm of soft actor-critic updates [6], we denote𝜓𝑖
and 𝜃𝑖 as the individual target critic and policy parameters, respec-
tively, and 𝛼 defines the temperature parameter balancing entropy
and reward maximization. 𝜋𝜃 = (𝜋𝜃1

, . . . , 𝜋𝜃𝑁
) denotes the joint

target policy vector, where each target policy 𝜋𝜃𝑖
, and correspond-

ingly each policy 𝜋𝜃𝑖 , consists of a 3-layered dense neural network.
For individual policy updates, we employ gradient ascent:

∇𝜃𝑖 𝐽 (𝜋𝜃𝑖 ) = E𝑜𝑖∼𝐷,𝑎∼𝜋𝜃
[
∇𝜃𝑖 log𝜋𝜃𝑖 (𝑎𝑖 |𝑜𝑖 )× (2)(

−𝛼 log𝜋𝜃𝑖 (𝑎𝑖 |𝑜𝑖 ) +𝑄𝜓𝑖
(𝑜𝑖 , 𝑎) − 𝑏 (𝑜𝑖 , 𝑎\𝑖 )

)]
.

To address the challenge of multi-agent credit assignment, we
subtract a baseline term 𝑏 (𝑜𝑖 , 𝑎\𝑖 ) to estimate an agent’s action net
effect [5], here defined as 𝑏 (𝑜𝑖 , 𝑎\𝑖 ) = E𝑎𝑖∼𝜋𝜃𝑖 [𝑄𝜓𝑖

(𝑜𝑖 , (𝑎𝑖 , 𝑎\𝑖 ))].

3 EXPERIMENTAL RESULTS
We hypothesize that our algorithm learns effectively, especially in
spatially complex coordination tasks under sparse rewards and test
this on the following collaborative environments: first, we use the
level-based foraging (LBF) environment [1], where agents need to
collect fruits on a grid. As opposed to the original implementation,
we leave the fruits on the gridwith a value of−1 after they have been
collected. This demands a higher relational reasoning capability
from agents, as they must now recognize them as noncollectable

Table 1: Average performance for each task and model over
3 seeds, taken at two different stages: first, after 106 steps to
indicate sample efficiency, and second showing asymptotic
performance. The best values are indicated in bold.

Algorithm Task
LBF-10-4p-4f-c LBF-15-8p-1f-c Wolfpack

MAA2C 0.04 | 0.48 0.01 | 0.86 174.1 | 218.5
MAAC 0.02 | 0.14 0.03 | 0.96 176.6 | 297.9
MAPPO 0.10 | 0.53 0.01 | 0.87 202.3 | 220.6
MARC 0.25 | 0.88 0.98 | 0.98 270.3 | 346.6
QMIX 0.00 | 0.34 0.00 | 0.00 4.2 | 292.5

obstacles. For testing high cooperation, our experiments run on
a 10 × 10 grid with 4 agents and 4 foods, enforcing cooperation
(denoted as 10x10-4p-4f-c). To assess scalability, we extend the
environment to a 15 × 15 grid with 8 agents and 1 fruit, requiring
cooperation among a larger number of agents (denoted as 15x15-
8p-1f-c). Second, we use Wolfpack [11] with 3 agents placed in
a 10 × 10 grid to capture 2 prey. In a departure from the original
setup, we introduce sparse rewards by removing additional rewards
based on the proximity to prey, significantly weakening the learning
signal.

In Table 1, we show average performances attained by ourmethod
compared toMAAC [7],MAA2C [10],MAPPO [16] and QMIX
[13]. MARC indicates a superior sample efficiency, showing a sig-
nificant difference in performance after only 106 steps in all tasks.
Asymptotically, our proposed method also outperforms all baselines
across tasks. The most significant margin is achieved in the hardest
task, LBF-10x10-4p-4f-c, where agents need to coordinate with at
least 3 agents, making the coordination effort significantly more
challenging and the reward particularly sparse. Also, the fruits re-
main in the environment, so the agents need to evaluate the level of
the fruits properly. The spatial inductive bias introduced in MARC
seems to aid the understanding of such complexities.

4 DISCUSSION
In this work, we put forward a relational approach to MARL, show-
casing its effectiveness in environments demanding spatial reason-
ing. The spatial inductive bias inherent in our method not only en-
hances asymptotic performance but also demonstrates strong sam-
ple efficiency compared to our baselines with lesser or no inductive
bias. Our method leverages a compact representation of the space
and a considered choice of relations, keeping the computational
overhead minimal without compromising the informativeness of
the representation. Overall, our work lays a strong foundation for
further exploration of relational learning in multi-agent settings,
while providing a robust framework capable of adapting to diverse
environmental conditions and requirements.
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