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ABSTRACT

Exploration in reinforcement learning remains a difficult challenge.
In order to drive exploration, ensembles with randomized prior
functions have recently been popularized to quantify uncertainty
in the value model. There is no theoretical reason for these en-
sembles to resemble the actual posterior, however. In this work,
we view training ensembles from the perspective of Sequential
Monte Carlo, a Monte Carlo method that approximates a sequence
of distributions with a set of particles. In particular, we propose an
algorithm that exploits both the practical flexibility of ensembles
and theory of the Bayesian paradigm. We incorporate this method
into a standard Deep Q-learning agent (DQN) and experimentally
show qualitatively good uncertainty quantification and improved
exploration capabilities over a regular ensemble.
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1 INTRODUCTION

Reinforcement learning (RL) algorithms are still notoriously sam-
ple inefficient. One pressing reason is the difficulty of exploring an
environment efficiently while assuming little prior knowledge [32].
A promising approach that is currently studied is to quantify un-
certainty in the value models learned by the agent, and then either
provide intrinsic reward or use Thompson sampling to explore [1-
4,7, 14, 15, 21, 26, 27, 29]. However, quantifying uncertainty for
deep neural networks is in itself a difficult task [18, 23].
Ensembles of neural networks have been shown to provide bet-
ter predictive accuracy over a single model in supervised learning
tasks [11, 20], as well as suitable methods for uncertainty quan-
tification for exploration in reinforcement learning [13, 26, 27].
While ensembles with independent models of identical architecture
tend to collapse to the same predictive model [17], several tech-
niques have been developed to prevent this, such as adversarial
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learning [20], bootstrapping the data [27], and adding additive pri-
ors [26]. Furthermore, some techniques such as Stein Variational
Gradient Descent [8, 22] alleviate this issue by interpreting the en-
semble as an approximation to the Bayesian posterior and training
it as such. The method that we propose falls into this last category
and aims to be closer to the posterior for more accurate uncertainty
quantification, while retaining the flexibility of ensembles.

Bayesian neural networks have been applied to RL through Vari-
ational Inference [14, 15, 30], as well as MCMC [1, 12, 19]. Due
to the complex nature of Neural Networks, however, it is unclear
how the model class in Variational inference biases uncertainty
quantification. On the other hand, MCMC is in theory unbiased
and also shows strong results in large networks in supervised learn-
ing [6, 16, 31]. However, MCMC methods such as Hamiltonian
Monte Carlo [25] can struggle to find every mode for complex
multimodal distributions [10]. This is an important drawback in
deep learning, where the posterior distribution is likely very ill
behaved, and especially in RL where under-approximation of the
posterior complexity might lead to underestimating the uncertainty
and therefore failure of exploration. Sequential Monte Carlo (SMC),
which uses a set of particles to approximate the posterior, can be a
remedy to these issues in non-deep learning applications [10].

In this work, we forego Variational Inference to avoid a deci-
sion in model class, and instead alleviate the issues in MCMC by
using SMC. Noting the success of ensembles in deep learning, we
unify ensembles and MCMC methods by using SMC algorithms to
train an ensemble in a Bayesian manner, to benefit from both the
practical effectiveness of ensembles and theoretical foundations of
MCMC. Specifically, we adapt existing SMC algorithms to a mini-
batch setting, and show that they are feasible methods to train
ensembles as approximations to the Bayesian posterior. Further-
more, as our main contribution, we introduce Sequential Monte
Carlo DQN (SMC-DQN), a RL-algorithm which uses SMC to track
a posterior over the Q-values and uses this posterior to explore
efficiently. We experimentally test our agent’s exploration capa-
bilities on several environments, observing significantly stronger
performance compared with regular ensembles, and results that
are competitive with a strong baseline.

2 BACKGROUND

We consider standard Markov Decision Process with discounted
rewards in the infinite horizon setting. Ensembles of Q-networks
Qg, (s,a),...,Qg, (s, a) are a widespread method to improve explo-
ration in an unknown environments. For example, the BootDQN
algorithm [27] achieves deep exploration through Thompson sam-
pling, sampling uniformly i € {1, ..., n} and acting greedily with
respect to the network Qg, for a full episode. In BootDQN each
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Figure 1: Learning curves over the BSuite environments. The solid line is the mean of 10 seeds for the Deep Sea environments,
and 5 seeds for Cartpole Swingup and Mountain Car. The shaded area denotes the standard error of the mean.

network Qp, is equipped with its own target network le(, and gets
updated using transitions (s, a,r,s”) from a replay buffer:
2
0; «— 0; — Vg, |Qp,(s,a) —r —max Qg (s",a")| . (1)
a i

To ensure diversity in the ensemble, independently initialized
prior functions are added to each ensemble member’s outputs. How-
ever, while effective, this technique lacks theoretical motivation
when considered as Bayesian priors for neural networks. In prob-
lems with well-defined likelihoods and priors, the Bayesian poste-

rior can therefore be expected to outperform prior functions.
Sequential Monte Carlo algorithms sample a sequence of distribu-
tions po(60), ..., pm(0). Leveraging this fact, we can set the target
distributions to a sequence interpolating between the prior and
posterior distribution over the parameters of a Q-learner: p;(0) o
p(DlH)’llp(Q), where A; is a sequence of temperatures 0 = g <
M < -+ < Ay =1, which can be dynamically optimised for [5, 9].

3 SEQUENTIAL MONTE CARLO DOQN

To improve exploration, we construct an agent that quantifies un-
certainty in its Q-values by approximating the posterior distribu-
tion over its parameters using SMC. Specifically, we extend a stan-
dard DQN agent [24] by replacing its point-wise estimator Qg(s, a)
with an ensemble Qg (s, a),...,Qy, (s,a) and sampling weights
w1, ... wp, to maintain an approximation of the posterior p(6|D, 6”),
conditioned on the replay buffer D = ((s¢, ar, 1, Sp+1)) =1 N and
target parameters 8’ = (0/, ..., 6},). In line with Schmitt et al. [30],
a normal distribution

Q@(s’ (l) - V(S, a) - yma}x Q@’ (S,, a/) ~ N(O’ O‘)

is used as a probabilistic interpretation of the squared temporal
difference error, and to represent the uncertainty in the targets we
define the likelihood to be a mixture distribution

log p(s,a,r,s’|0,0") =

n 1 12
log Z - exp
i=1

—-—[Qo(s. @) —r(s,a)-
20°

contrasting BootDQN which shares no target values between en-
semble members. After collecting a new batch of trajectories 8
by acting in the environment, the posterior distribution can be
updated efficiently by interpolating between the previous posterior
p(016’, D) and the new posterior p(0]6’, D U B) with SMC.

Updating the target networks 6’ changes the target distribution,
meaning that the sample (61,...,0,, wi,...,wy) is no longer a

@

y max Qg (s’, a’)]2
a i
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sample of the posterior with respect to the updated targets, i.e.,
p (016> D). Therefore, the typical target update 6] < 6; is now
accompanied by another SMC step, which interpolates between
p(016], 4 D) and p(6]8)e,, D).

4 EXPERIMENTAL STUDY

We test our agent in the exploration environments as well as Moun-
tain Car in BSuite [28], against BSuite’s baseline BootDQN agent
with and without prior. Figure 1 shows the performance of the
agents on each task. It can be seen that SMC-DQN outperforms
BootDQN without priors on all our benchmarks. On Deep Sea it
achieves comparable performance to BootDQN with priors, and sig-
nificantly outperforms BootDQN with priors on Cartpole Swingup,
where BootDON at this ensemble size fails to learn a meaning-
ful policy even with prior functions. Further, on Mountain Car
SMC-DON learns at the same speed as BootDQN with priors in the
beginning, but converges to a slightly better policy.

Our results show a gap between Deep Sea and the continuous
environments in the performance relative to the baselines. We hy-
pothesize that this is due to the fact that the likelihood does not
explain the one-hot encoded environment Deep Sea very well. In
the continuous environments, agents can exploit the generalization
capabilities of neural networks, allowing the posterior to model sen-
sible generalization behaviours. However, this generalization can
lead to errors in one-hot encoded environments where unconnected
states are independent.

5 CONCLUSION

We introduced the novel idea of using SMC to train an ensemble in
order to approximate the Bayesian posterior distribution. Specifi-
cally, we modified the BootDQN algorithm to use SMC, thus keeping
track of a posterior over the Q-values in a theoretically sound man-
ner. We found that such an approach is able to maintain a diverse
set of models that can drive exploration in difficult-to-explore en-
vironments such as Deep Sea and Cartpole Swingup. Especially
in continuous state environments, the uncertainty quantification
provided by the posterior distribution leads to better exploration
compared to our baselines. In the future, we intend to investigate
the influence of the choice of likelihood and derive methods to
synthesize meaningful likelihoods.
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