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ABSTRACT
Exploration in reinforcement learning remains a difficult challenge.
In order to drive exploration, ensembles with randomized prior
functions have recently been popularized to quantify uncertainty
in the value model. There is no theoretical reason for these en-
sembles to resemble the actual posterior, however. In this work,
we view training ensembles from the perspective of Sequential
Monte Carlo, a Monte Carlo method that approximates a sequence
of distributions with a set of particles. In particular, we propose an
algorithm that exploits both the practical flexibility of ensembles
and theory of the Bayesian paradigm. We incorporate this method
into a standard Deep Q-learning agent (DQN) and experimentally
show qualitatively good uncertainty quantification and improved
exploration capabilities over a regular ensemble.
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1 INTRODUCTION
Reinforcement learning (RL) algorithms are still notoriously sam-
ple inefficient. One pressing reason is the difficulty of exploring an
environment efficiently while assuming little prior knowledge [32].
A promising approach that is currently studied is to quantify un-
certainty in the value models learned by the agent, and then either
provide intrinsic reward or use Thompson sampling to explore [1–
4, 7, 14, 15, 21, 26, 27, 29]. However, quantifying uncertainty for
deep neural networks is in itself a difficult task [18, 23].

Ensembles of neural networks have been shown to provide bet-
ter predictive accuracy over a single model in supervised learning
tasks [11, 20], as well as suitable methods for uncertainty quan-
tification for exploration in reinforcement learning [13, 26, 27].
While ensembles with independent models of identical architecture
tend to collapse to the same predictive model [17], several tech-
niques have been developed to prevent this, such as adversarial
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learning [20], bootstrapping the data [27], and adding additive pri-
ors [26]. Furthermore, some techniques such as Stein Variational
Gradient Descent [8, 22] alleviate this issue by interpreting the en-
semble as an approximation to the Bayesian posterior and training
it as such. The method that we propose falls into this last category
and aims to be closer to the posterior for more accurate uncertainty
quantification, while retaining the flexibility of ensembles.

Bayesian neural networks have been applied to RL through Vari-
ational Inference [14, 15, 30], as well as MCMC [1, 12, 19]. Due
to the complex nature of Neural Networks, however, it is unclear
how the model class in Variational inference biases uncertainty
quantification. On the other hand, MCMC is in theory unbiased
and also shows strong results in large networks in supervised learn-
ing [6, 16, 31]. However, MCMC methods such as Hamiltonian
Monte Carlo [25] can struggle to find every mode for complex
multimodal distributions [10]. This is an important drawback in
deep learning, where the posterior distribution is likely very ill
behaved, and especially in RL where under-approximation of the
posterior complexity might lead to underestimating the uncertainty
and therefore failure of exploration. Sequential Monte Carlo (SMC),
which uses a set of particles to approximate the posterior, can be a
remedy to these issues in non-deep learning applications [10].

In this work, we forego Variational Inference to avoid a deci-
sion in model class, and instead alleviate the issues in MCMC by
using SMC. Noting the success of ensembles in deep learning, we
unify ensembles and MCMC methods by using SMC algorithms to
train an ensemble in a Bayesian manner, to benefit from both the
practical effectiveness of ensembles and theoretical foundations of
MCMC. Specifically, we adapt existing SMC algorithms to a mini-
batch setting, and show that they are feasible methods to train
ensembles as approximations to the Bayesian posterior. Further-
more, as our main contribution, we introduce Sequential Monte
Carlo DQN (SMC-DQN), a RL-algorithm which uses SMC to track
a posterior over the Q-values and uses this posterior to explore
efficiently. We experimentally test our agent’s exploration capa-
bilities on several environments, observing significantly stronger
performance compared with regular ensembles, and results that
are competitive with a strong baseline.

2 BACKGROUND
We consider standard Markov Decision Process with discounted
rewards in the infinite horizon setting. Ensembles of Q-networks
𝑄𝜃1 (𝑠, 𝑎), . . . , 𝑄𝜃𝑛 (𝑠, 𝑎) are a widespread method to improve explo-
ration in an unknown environments. For example, the BootDQN
algorithm [27] achieves deep exploration through Thompson sam-
pling, sampling uniformly 𝑖 ∈ {1, . . . , 𝑛} and acting greedily with
respect to the network 𝑄𝜃𝑖 for a full episode. In BootDQN each
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Figure 1: Learning curves over the BSuite environments. The solid line is the mean of 10 seeds for the Deep Sea environments,
and 5 seeds for Cartpole Swingup and Mountain Car. The shaded area denotes the standard error of the mean.

network𝑄𝜃𝑖 is equipped with its own target network𝑄𝜃 ′
𝑖
, and gets

updated using transitions (𝑠, 𝑎, 𝑟, 𝑠′) from a replay buffer:

𝜃𝑖 ← 𝜃𝑖 − ∇𝜃𝑖
[
𝑄𝜃𝑖 (𝑠, 𝑎) − 𝑟 −max

𝑎′
𝑄𝜃 ′

𝑖
(𝑠′, 𝑎′)

]2
. (1)

To ensure diversity in the ensemble, independently initialized
prior functions are added to each ensemble member’s outputs. How-
ever, while effective, this technique lacks theoretical motivation
when considered as Bayesian priors for neural networks. In prob-
lems with well-defined likelihoods and priors, the Bayesian poste-
rior can therefore be expected to outperform prior functions.

Sequential Monte Carlo algorithms sample a sequence of distribu-
tions 𝑝0 (𝜃 ), . . . , 𝑝𝑚 (𝜃 ). Leveraging this fact, we can set the target
distributions to a sequence interpolating between the prior and
posterior distribution over the parameters of a 𝑄-learner: 𝑝𝑡 (𝜃 ) ∝
𝑝 (D|𝜃 )𝜆𝑡 𝑝 (𝜃 ), where 𝜆𝑡 is a sequence of temperatures 0 = 𝜆0 <

𝜆1 < · · · < 𝜆𝑚 = 1, which can be dynamically optimised for [5, 9].

3 SEQUENTIAL MONTE CARLO DQN
To improve exploration, we construct an agent that quantifies un-
certainty in its 𝑄-values by approximating the posterior distribu-
tion over its parameters using SMC. Specifically, we extend a stan-
dard DQN agent [24] by replacing its point-wise estimator𝑄𝜃 (𝑠, 𝑎)
with an ensemble 𝑄𝜃1 (𝑠, 𝑎), . . . , 𝑄𝜃𝑛 (𝑠, 𝑎) and sampling weights
𝑤1, . . .𝑤𝑛 tomaintain an approximation of the posterior 𝑝 (𝜃 |D, 𝜽 ′),
conditioned on the replay buffer D = ((𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1))𝑡=1...𝑁 and
target parameters 𝜽 ′ = (𝜃 ′1, . . . , 𝜃

′
𝑛) . In line with Schmitt et al. [30],

a normal distribution

𝑄𝜃 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎) − 𝛾 max
𝑎′

𝑄𝜃 ′ (𝑠′, 𝑎′) ∼ N (0, 𝜎)

is used as a probabilistic interpretation of the squared temporal
difference error, and to represent the uncertainty in the targets we
define the likelihood to be a mixture distribution

log 𝑝 (𝑠, 𝑎, 𝑟, 𝑠′ |𝜃,𝜽 ′) =

log
𝑛∑︁
𝑖=1

1
𝑛
exp

©«
− 1
2𝜎2
[𝑄𝜃 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎)−

𝛾 max
𝑎′

𝑄𝜃 ′
𝑖
(𝑠′, 𝑎′)]2

ª®®¬ ,
(2)

contrasting BootDQN which shares no target values between en-
semble members. After collecting a new batch of trajectories B
by acting in the environment, the posterior distribution can be
updated efficiently by interpolating between the previous posterior
𝑝 (𝜃 |𝜽 ′,D) and the new posterior 𝑝 (𝜃 |𝜽 ′,D ∪ B) with SMC.

Updating the target networks 𝜽 ′ changes the target distribution,
meaning that the sample (𝜃1, . . . , 𝜃𝑛, 𝑤1, . . . ,𝑤𝑛) is no longer a

sample of the posterior with respect to the updated targets, i.e.,
𝑝 (𝜃 |𝜽 ′new,D). Therefore, the typical target update 𝜃 ′𝑖 ← 𝜃𝑖 is now
accompanied by another SMC step, which interpolates between
𝑝 (𝜃 |𝜽 ′old,D) and 𝑝 (𝜃 |𝜽

′
new,D).

4 EXPERIMENTAL STUDY
We test our agent in the exploration environments as well as Moun-
tain Car in BSuite [28], against BSuite’s baseline BootDQN agent
with and without prior. Figure 1 shows the performance of the
agents on each task. It can be seen that SMC-DQN outperforms
BootDQN without priors on all our benchmarks. On Deep Sea it
achieves comparable performance to BootDQN with priors, and sig-
nificantly outperforms BootDQN with priors on Cartpole Swingup,
where BootDQN at this ensemble size fails to learn a meaning-
ful policy even with prior functions. Further, on Mountain Car
SMC-DQN learns at the same speed as BootDQN with priors in the
beginning, but converges to a slightly better policy.

Our results show a gap between Deep Sea and the continuous
environments in the performance relative to the baselines. We hy-
pothesize that this is due to the fact that the likelihood does not
explain the one-hot encoded environment Deep Sea very well. In
the continuous environments, agents can exploit the generalization
capabilities of neural networks, allowing the posterior to model sen-
sible generalization behaviours. However, this generalization can
lead to errors in one-hot encoded environments where unconnected
states are independent.

5 CONCLUSION
We introduced the novel idea of using SMC to train an ensemble in
order to approximate the Bayesian posterior distribution. Specifi-
cally, wemodified the BootDQN algorithm to use SMC, thus keeping
track of a posterior over the Q-values in a theoretically sound man-
ner. We found that such an approach is able to maintain a diverse
set of models that can drive exploration in difficult-to-explore en-
vironments such as Deep Sea and Cartpole Swingup. Especially
in continuous state environments, the uncertainty quantification
provided by the posterior distribution leads to better exploration
compared to our baselines. In the future, we intend to investigate
the influence of the choice of likelihood and derive methods to
synthesize meaningful likelihoods.

ACKNOWLEDGMENTS
This work has received funding from the European Union’s Horizon
2020 research and innovation programme, under grant agreements
964505 (E-pi) and 952215 (TAILOR).

Extended Abstract  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2529



REFERENCES
[1] Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. 2018.

Efficient exploration through Bayesian Deep Q-Networks. In 2018 Information
Theory and Applications Workshop (ITA). IEEE.

[2] Chenjia Bai, Lingxiao Wang, Lei Han, Jianye Hao, Animesh Garg, Peng Liu, and
Zhaoran Wang. 2021. Principled Exploration via Optimistic Bootstrapping and
Backward Induction. In International Conference on Machine Learning.

[3] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Sax-
ton, and Remi Munos. 2016. Unifying count-based exploration and intrinsic
motivation. In Advances in Neural Information Processing Systems, Vol. 29.

[4] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. 2018. Explo-
ration by random Network Distillation. In International Conference on Learning
Representations.

[5] Michael Cai, Marco Del Negro, Edward Herbst, Ethan Matlin, Reca Sarfati, and
Frank Schorfheide. 2021. Online Estimation of DSGE Models. The Econometrics
Journal 24, 1 (2021), C33–C58.

[6] Tianqi Chen, Emily Fox, and Carlos Guestrin. 2014. Stochastic Gradient Hamil-
tonian Monte Carlo. In International Conference on Machine Learning.

[7] Kamil Ciosek, Quan Vuong, Robert Loftin, and Katja Hofmann. 2019. Better explo-
ration with optimistic actor critic. In Advances in Neural Information Processing
Systems, Vol. 32.

[8] Francesco D’Angelo and Vincent Fortuin. 2021. Repulsive Deep Ensembles are
Bayesian. In Advances in Neural Information Processing Systems, Vol. 34.

[9] Hai-Dang Dau and Nicolas Chopin. 2022. Waste-free Sequential Monte Carlo.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 84, 1
(2022), 114–148.

[10] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. 2006. Sequential Monte Carlo
Samplers. Journal of the Royal Statistical Society: Series B (Statistical Methodology)
68, 3 (2006), 411–436.

[11] Thomas G. Dietterich. 2000. Ensemble Methods in Machine Learning. InMultiple
Classifier Systems. Springer Berlin Heidelberg, 1–15.

[12] Vikranth Dwaracherla and Benjamin Van Roy. 2021. Langevin DQN.
arXiv:2002.07282 [cs.LG]

[13] Matthew Fellows, Kristian Hartikainen, and Shimon Whiteson. 2021. Bayesian
Bellman Operators. In Advances in Neural Information Processing Systems, Vol. 34.

[14] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian
Osband, Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin,
Charles Blundell, and Shane Legg. 2019. Noisy Networks for Exploration.
arXiv:1706.10295 [cs.LG]

[15] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a Bayesian Approximation:
Representing Model Uncertainty in deep Learning. In International Conference
on Machine Learning.

[16] Adrià Garriga-Alonso and Vincent Fortuin. 2021. Exact Langevin Dynamics with
Stochastic Gradients. arXiv:2102.01691 (2021).

[17] Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun,
Stéphane d’Ascoli, Giulio Biroli, Clément Hongler, and Matthieu Wyart. 2020.
Scaling description of generalization with number of parameters in deep learning.
Journal of Statistical Mechanics: Theory and Experiment 2020, 2 (2020).

[18] Eyke Hüllermeier and Willem Waegeman. 2021. Aleatoric and epistemic uncer-
tainty in machine learning: An introduction to concepts and methods. Machine

Learning 110, 3 (2021), 457–506.
[19] Haque Ishfaq, Qingfeng Lan, Pan Xu, A. Rupam Mahmood, Doina Precup, An-

ima Anandkumar, and Kamyar Azizzadenesheli. 2023. Provable and Practi-
cal: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo.
arXiv:2305.18246 [cs.LG]

[20] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Sim-
ple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. In
Advances in Neural Information Processing Systems, Vol. 30.

[21] Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. 2021. Sunrise:
A Simple Unified Framework for Ensemble Learning in Deep Reinforcement
Learning. In International Conference on Machine Learning.

[22] Qiang Liu and Dilin Wang. 2016. Stein Variational Gradient Descent: A Gen-
eral Purpose Bayesian Inference Algorithm. In Advances in Neural Information
Processing Systems, Vol. 29.

[23] Owen Lockwood and Mei Si. 2022. A Review of Uncertainty for Deep Reinforce-
ment Learning. In Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment.

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540
(Feb. 2015), 529–533.

[25] Radford M. Neal et al. 2011. MCMC using Hamiltonian dynamics. In Handbook
of Markov Chain Monte Carlo. Chapman and Hall/CRC.

[26] IanOsband, JohnAslanides, andAlbin Cassirer. 2018. Randomized Prior Functions
for Deep Reinforcement Learning. In Advances in Neural Information Processing
Systems, Vol. 31.

[27] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. 2016.
Deep Exploration via Bootstrapped DQN. In Advances in Neural Information
Processing Systems, Vol. 29.

[28] Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre
Saraiva, Katrina McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh,
Benjamin Van Roy, Richard Sutton, David Silver, and Hado Van Hasselt. 2020. Be-
haviour Suite for Reinforcement Learning. In International Conference on Learning
Representations.

[29] Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. 2017. Count-
Based Exploration with Neural Density Models. In International Conference on
Machine Learning.

[30] Simon Schmitt, John Shawe-Taylor, and Hado van Hasselt. 2023. Exploration via
Epistemic Value Estimation. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 37.

[31] Florian Wenzel, Kevin Roth, Bastiaan Veeling, Jakub Swiatkowski, Linh Tran,
Stephan Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian
Nowozin. 2020. How Good is the Bayes Posterior in Deep Neural Networks
Really?. In International Conference on Machine Learning.

[32] Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Jianye Hao, Zhaopeng Meng,
Peng Liu, and Zhen Wang. 2021. Exploration in Deep Reinforcement Learning:
From Single-Agent to Multiagent Domain. IEEE Transactions on Neural Networks
and Learning Systems (2021).

Extended Abstract  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2530

https://arxiv.org/abs/2002.07282
https://arxiv.org/abs/1706.10295
https://arxiv.org/abs/2305.18246

	Abstract
	1 Introduction
	2 Background
	3 Sequential Monte Carlo DQN
	4 Experimental Study
	5 Conclusion
	Acknowledgments
	References



