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Abstract
Swarm Robotic Systems (SRSs) are multi-robot systems usually
composed of relatively simple robots. Local decisions and com-
munication between robots allow for the emergence of complex
behaviors of the entire SRS. The distributed nature of the SRSs
enables their use in many real-world applications. However, de-
spite the common belief that these systems are inherently robust
and fault tolerant, it has been shown that even a few faulty robots
could considerably hinder the performance of the entire SRS. In
this paper, we propose a distributed fault detection approach that
exploits machine learning classifiers to allow each robot of a SRS
to detect faults in other robots and/or in itself. The proposed fault
detection approach is data-driven, requiring a reduced amount of
explicit domain knowledge, and is based on data that can be easily
collected by common swarm robotics platforms. We test the pro-
posed fault detection approach in simulation and analyze the results
using non-parametric statistical tests. Our extensive experimental
campaign shows that our approach has good performance and is
robust regardless of the ratio of faulty robots in the SRS.
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1 INTRODUCTION
A Swarm Robotic System (SRS) is a distributed multi-robot system
composed of relatively simple robots. Local decisions and com-
munication between robots allow for the emergence of complex
behaviors of the entire SRS [8]. The distributed nature of the SRSs
enables their use in many real-world applications, e.g., logistics,
precision agriculture, and environmental monitoring [25].
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Due to the usually large number of robots composing a swarm,
these systems are often considered to be inherently robust and fault-
tolerant. However, Winfield et al. [29] show that even a few faulty
robots could considerably hinder the work of the entire SRS. Thus,
various distributed fault detection approaches have been proposed
in the last few years [4]. These approaches exploit the distributed
nature of the SRSs, allowing each robot to detect faults in the other
robots and/or in itself [5, 12, 15, 17, 23, 24, 26, 27], usually requiring
relatively little efforts for computation and communication due to
the simple nature of robots.

Designing such fault detection approaches often requires to elic-
itate domain knowledge about the environment, the robots, and
the task; this knowledge informs decisions such as how to process
the measurements on the observed robots, how to choose the pa-
rameters of the classification methods, and how to create models of
non-faulty robot behavior [13]. The complexity of the real-world
applications of the SRSs could make it complicated to obtain and
formalize such domain knowledge. On the other hand, in recent
years, data storing solutions have become faster and cheaper and, at
the same time, the field of machine learning has grown considerably,
with many real-world applications [22].

In this paper, we propose a fault detection approach exploiting
machine learning methods to classify a robot as faulty or non-faulty.
We propose to model the observed robots with numerical features,
obtained with minimal processing of raw measurements so to leave
freedom to the machine learning methods, which automatically
learn the best way to elaborate further on the features to obtain
better performance in classification. We test the proposed fault de-
tection approach in simulation with several swarm behaviors. Then,
we analyze the results and compare the performance against the
fault detection approach described in [24] using non-parametric
statistical tests. The analysis highlights that the proposed fault
detection approach often outperforms that of [24] and that its per-
formance remains robust even when the number of faulty robots
becomes large.

The main original contributions of this paper are two: (1) the
use of machine learning classifiers for labeling the robots of the
swarm as faulty or non-faulty and (2) the use of numerical features
close to raw measurements.

This paper is organized as follows. Section 2 reviews related
work. Section 3 presents the proposed fault detection approach.
Section 4 describes the setup for the experiments. Section 5 reports
the results of the experiments and their analysis. Section 6 discusses
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the implications of the obtained results and directions for future
studies. Section 7 presents our conclusions.

The Supplementary Material and the code for the experiments
are at: github.com/AleCarminati/ml-faultdetection-epuck.

2 RELATEDWORK
A SRS is “a system that consists of multiple intelligent intercon-
nected nodes and possesses swarm capability” [20]. While robots
considered individually are “relatively incapable or inefficient on
their own with respect to the task at hand” [21], their ability to com-
municate and to interact with other nearby robots allows the SRS
to carry out the required task through the cooperation of the robots.
Due to their distributed nature, SRSs do not require centralized or
hierarchical control [29].

In principle, an SRS is inherently robust [8, 21, 29]: its fully
distributed nature implies the absence of a single point of failure,
and non-faulty robots can compensate for faulty ones. However,
Winfield et al. [29] show that some faults, which cause partial
failures in robots, can considerably hinder the work of the entire
SRS. Therefore, it emerges the necessity for a distributed fault
detection approach, which allows each robot to detect faults in
other robots [3, 4] and/or in itself.

Fault detection approaches for robot swarms are mainly charac-
terized by the limited requirements in terms of computation and
communication (according to the simple nature of robots) and can
be categorized according to their scope and the classification algo-
rithm they use. The scope can be exogenous or endogenous [24]. In
the first case, a robot runs the fault detection algorithm to detect
faults in other robots; in the second case, a robot runs the fault
detection algorithm to detect faults in itself. Some fault detection al-
gorithms can detect faults both in an endogenous and an exogenous
way. Classification algorithms analyze collected data to classify a
robot as faulty or non-faulty. Qin et al. [20] divide them into two
sorts: quantitative and qualitative classification algorithms. Qual-
itative classification algorithms exploit straightforward schemes
that do not need complex models of the behavior of the robots.
Therefore, they are resource-saving and time-saving but not pre-
cise [20]. For instance, the classification algorithm in [1] exploits
fuzzy rules for classification of faulty agents in a satellite formation
flight. Quantitative classification algorithms can be further classi-
fied into two classes [20]: model-based and data-driven, which are
discussed below.

Model-based classification algorithms use a model of the behav-
ior of the robots based on domain knowledge about the robots
and the task. Christensen et al. [5] propose one of the first fault
detection approaches for an SRS. The behavior of the SRS, inspired
by some species of fireflies, consists in synchronizing the flashing
of the LEDs of the robots. To detect faults, each robot scans its
surroundings for out-of-sync robots. Millard et al. [17] propose an
exogenous fault-detection approach with a model-based classifi-
cation algorithm that simulates the controller of another robot to
predict its behavior, which, if different from the observed one, may
signal a fault.

Data-driven classification algorithms collect data to learn au-
tonomously to distinguish between faulty and non-faulty behaviors.

In general, they need less prior domain knowledge w.r.t. model-
based classification algorithms. Several fault detection approaches
based on data-driven classification methods have been proposed.
In [15], the classification algorithm is based on statistical error
detection and is used for endogenous fault detection: each robot
compares the values obtained on some task-specific performance
indicators with the ones of its neighbors to detect if it is faulty. In
[12], each robot 𝑟 compares data it collected about itself with data
that another robot 𝑟 ′ collected about 𝑟 . If they are coherent, both
robots are classified as non-faulty; otherwise, they consult a third
robot 𝑟 ′′ to detect which one is faulty. The authors of [16] present
a new data-driven method to allow a robot to extract metrics which
can distinguish between normal and faulty states.

The approach that is closest to the one we present in this paper is
the work of Tarapore et al. [23, 24, 26, 27], where an exogenous fault
detection approach exploiting a classification algorithm based on
the Cross-Regulation Model (CRM) [24, 26] is presented. The CRM
exploits six binary features obtained by processing and thresholding
the measurements on an observed robot and returns a faulty or a
non-faulty outcome. The results of the classification algorithm are
shared between robots, using a majority voting scheme to decide
collectively if a robot is faulty or non-faulty. The feasibility of this
fault detection approach has been shown also on a physical robot
swarm in [27]. Differently from this approach, we use numerical
features and machine learning classifiers, as detailed in the next
section.

We remark that, although the literature on fault detection in
single-robot systems is quite rich [13], those methods are generally
not applicable to SRSs. In fact, they usually are only endogenous
fault detectors, and often require computational capabilities beyond
those available in common SRS platforms [14]. Moreover, we re-
mark that swarm robotic fault detection differs from the detection
of Byzantine threats in multirobot and swarm systems, as these
represent adversarial rather than malfunctioning robots [6].

In this work, we apply some of these solutions to the SRS field by
proposing an exogenous fault detection approach based on binary
and numerical features and exploiting machine learning methods
for data-driven classification.

3 THE PROPOSED FAULT DETECTION
APPROACH

The fault detection approach we propose requires every robot of
the SRS to have the ability of sending and receiving messages and to
feature sensors to detect the distance and heading to the neighbor-
ing robots. These requirements are often satisfied by most swarm
robot platforms. For instance, Range And Bearing (RAB) sensors
and actuators are available on e-pucks [18]. They can broadcast
simple messages, and when they receive a message, they can detect
the distance and the angle of the sender.

3.1 Overview
We present the proposed fault detection algorithm’s skeleton, which
is similar to the one described in [24], in Algorithm 1. It considers
control cycles of 𝑇cycle seconds and experiments of 𝑇exp seconds.

Phase A is executed for the entire duration of the experiment:
each robot observes its neighbors and acquires and processes the
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Algorithm 1 Proposed fault detection algorithm’s structure
1: 𝑡 = 0
2: while 𝑡 < 𝑇exp do
3: Phase A: Observe and Process
4: if (𝑡 mod 𝑇cycle ) ≤ 𝑇clas then
5: Phase B: Classify
6: else
7: Phase C: Vote
8: end if
9: increase 𝑡
10: end while

raw measurements to calculate the features that are used to model
them. In the first 𝑇clas seconds of the control cycle 𝑇cycle , phase B
is executed: each robot uses the classification method to classify
the other robots it has observed as faulty or non-faulty. After the
first 𝑇clas seconds of each control cycle, each robot consolidates its
individual classifications on the other robots. Robot 𝑟𝑖 individually
classifies robot 𝑟 𝑗 as faulty if and only if, in the last𝑇clas seconds, 𝑟𝑖
classified 𝑟 𝑗 as faulty for the majority of the times. In the remaining
(𝑇cycle −𝑇clas) seconds, phase C is executed: the robots communicate
their individual classifications of the observed robots to the other
robots. Using amajority voting scheme, they collectively classify if a
robot is faulty or non-faulty. Note that the collective classifications
obtained in one cycle do not influence the classifications of the
other cycles.

The three phases are detailed in the following.

3.2 Phase A: Observe and Process
In this phase, each robot takes measurements of its neighbors. We
define as 𝑑𝑖 𝑗 the distance between robot 𝑟𝑖 and robot 𝑟 𝑗 , measured
by 𝑟𝑖 . We define as 𝜙𝑖 𝑗 the angle between 𝑟𝑖 ’s and 𝑟 𝑗 ’s headings,
measured by 𝑟𝑖 . The rawmeasurements are then processed to obtain
the features that model the observed robots’ behavior. The proposed
fault detection algorithm can be used with two types of features:
binary and numerical.

3.2.1 Binary Features The six binary features (𝐹1, 𝐹2, . . . , 𝐹6) of
the proposed fault detection approach are the same used in [24].

Features 𝐹1 and 𝐹2 model if, for the majority of the past obser-
vations collected in a time window𝑊𝑙 , the observed robot 𝑟 𝑗 had
at least a neighbor in the ranges [0, 15] cm and (15, 30] cm, respec-
tively. Robot 𝑟𝑖 measures the distance between two robots, 𝑟 𝑗 and
𝑟𝑘 , using the Law of Cosines: (𝑑2

𝑖 𝑗
+ 𝑑2

𝑖𝑘
− 2𝑑𝑖 𝑗𝑑𝑖𝑘 cos(𝜙𝑖 𝑗 − 𝜙𝑖𝑘 ))

1
2 .

Features 𝐹3 and 𝐹4 model the motor actions of the observed
robot. Both features require estimating the distance traversed by
the observed robot 𝑟 𝑗 in a time window using Algorithm 2. Feature
𝐹3 is equal to 1 if and only if 𝐷𝑖𝑠𝑡 [𝑟𝑖 , 𝑟 𝑗 ,𝑊𝑙 ] > 0.15 ·𝑊𝑙 · 𝑣𝑚𝑎𝑥 ,
where 𝑣𝑚𝑎𝑥 is the robot’s maximum speed. Feature 𝐹4 models the
proportion of times the observed robot 𝑟 𝑗 changed its heading. The
change in heading of 𝑟 𝑗 , as observed by 𝑟𝑖 , is encoded by a binary
value 𝑀𝑗 , which is equal to one when ¥𝜔 𝑗

¥𝜔𝑚𝑎𝑥
· 𝐷𝑖𝑠𝑡 [𝑟𝑖 ,𝑟 𝑗 ,𝑊𝑙 ]

𝑊𝑠 𝑣𝑚𝑎𝑥
> 0.1,

where ¥𝜔 𝑗

¥𝜔𝑚𝑎𝑥
is the normalized angular acceleration of robot 𝑟 𝑗 . The

value ¥𝜔 𝑗

¥𝜔𝑚𝑎𝑥
is calculated by robot 𝑟 𝑗 and then sent to its neighbors.

Feature 𝐹4 is equal to 1 if and only if the proportion between the

number of times 𝑟 𝑗 is observed with𝑀𝑗 = 1 and the total number
of times 𝑟 𝑗 is observed in𝑊𝑙 is larger than 0.05.

Features 𝐹5 and 𝐹6 model the relationship between the change
in heading of the observed robot 𝑟 𝑗 and the presence of nearby
robots. Feature 𝐹5 is equal to 1 if and only if the proportion between
the number of times 𝑟 𝑗 is observed with 𝑀𝑗 = 1 and at least one
neighbor in the range [0, 30] cm, and the total number of times 𝑟 𝑗
is observed in𝑊𝑙 is larger than 0.05. Feature 𝐹6 is equal to 1 if and
only if the proportion between the number of times 𝑟 𝑗 is observed
with𝑀𝑗 = 1 and no neighbors in the range [0, 30] cm, and the total
number of times 𝑟 𝑗 is observed in𝑊𝑙 is larger than 0.05.

These binary features and the thresholds used to calculate their
values are rather ad hoc and require domain knowledge in order to
be defined. Further details can be found in [24].

Voting to improve the estimation of binary features As in [24],
when a robot 𝑟𝑖 processes the binary features about robot 𝑟 𝑗 , it
sends them to its neighbors. If robot 𝑟𝑖 observes 𝑟 𝑗 , every binary
feature about 𝑟 𝑗 that 𝑟𝑖 processes is then updated using a majority
voting scheme: each message sent by a neighbour 𝑟𝑘 and received
by 𝑟𝑖 with the binary features about 𝑟 𝑗 is a vote,in addition to
the binary features about 𝑟 𝑗 that 𝑟𝑖 processed itself. This process
exploits the distributed nature of the SRS to obtain more robust
binary features.

3.2.2 Numerical Features Beyond the binary features of [24] we
introduce numerical features 𝑓 1, 𝑓 2, . . . , 𝑓 5.

Features 𝑓 1 and 𝑓 2 represent the speeds of the left and right
wheels of the observed robot, respectively. They are obtained from
the speed of the wheels that every robot communicates to the
neighboring robots. Note that these numerical features are used to
compute binary features 𝐹4, 𝐹5, and 𝐹6. Indeed, ¤𝜔 𝑗 =

𝑓 2−𝑓 1
ℎ

(where

ℎ is the distance between the wheels), and ¥𝜔 𝑗 ≈ ¤𝜔 𝑗 (𝑡+𝑑𝑡 )− ¤𝜔 𝑗 (𝑡 )
𝑑𝑡

,
where 𝑑𝑡 is a short time interval.

The distances of a robot’s neighbors are computed using the
Law of Cosines, as described in Section 3.2.1. Storing the distance
of every robot from each of its neighbors has a worst-case space
complexity of O(𝑛2), where 𝑛 is the number of robots in the SRS.
To reduce this complexity to O(𝑛), for each observed robot only
two features, 𝑓 3 and 𝑓 4 are computed: the distance of the nearest

Algorithm 2 Compute distance 𝐷𝑖𝑠𝑡 [𝑟𝑖 , 𝑟 𝑗 ,𝑊𝑙 ] traversed by robot
𝑟 𝑗 during time window𝑊𝑙 , as observed by robot 𝑟𝑖

1:
−→
𝑃
𝑗

1𝑖 = (𝑑𝑖 𝑗 cos(𝜙𝑖 𝑗 ), 𝑑𝑖 𝑗 sin(𝜙𝑖 𝑗 ) )
2: 𝜔𝑖 = 0
3: −→𝑣𝑖 = (0, 0)
4: for (𝑡 = current to 𝑡 = current +𝑊𝑙 ) do
5: 𝜔𝑖 = 𝜔𝑖 +Δ𝜔𝑖 , where Δ𝜔𝑖 =

−𝑣𝑙 +𝑣𝑟
ℎ

·Δ𝑡 , 𝑣𝑙 and 𝑣𝑟 are the speeds of
the left and right wheels, respectively, and ℎ is the distance between
the wheels

6: −→𝑣𝑖 =
−→𝑣𝑖 + ( 𝑣𝑙 +𝑣𝑟2 · Δ𝑡 · cos(𝜔𝑖 + Δ𝜔𝑖

2 ), 𝑣𝑙 +𝑣𝑟2 · Δ𝑡 · sin(𝜔𝑖 + Δ𝜔𝑖
2 ) )

7: end for
8:

−→
𝑃 = (𝑑𝑖 𝑗 cos𝜙𝑖 𝑗 , 𝑑𝑖 𝑗 sin𝜙𝑖 𝑗 )

9:
−→
𝑃
𝑗

2𝑖 = (𝑃𝑥 cos(𝜔𝑖 ) − 𝑃𝑦 sin(𝜔𝑖 ), 𝑃𝑥 sin(𝜔𝑖 ) + 𝑃𝑦 cos(𝜔𝑖 ) ) + −→
𝑣𝑖

10: return ( (𝑃 𝑗

1𝑖𝑥 − 𝑃
𝑗

2𝑖𝑥 )
2 + (𝑃 𝑗

1𝑖𝑦 − 𝑃
𝑗

2𝑖𝑦 )
2 ) 1

2
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neighbor and the average distance of the neighbors, respectively.
Note that these numerical features are used to compute binary
features 𝐹1, 𝐹2, 𝐹5, and 𝐹6.

Feature 𝑓 5 represents the distance traveled by each robot in the
last𝑊𝑙 seconds and is computed using Algorithm 2. Note that this
feature is used to compute binary features 𝐹3, 𝐹4, 𝐹5, and 𝐹6.

Differently from the binary features, it is not feasible for the
robots of the SRS to share, compare, and vote on these numerical
features. In fact, in our implementation, a numerical feature occu-
pies 32 bits in single precision format. Thus, a message with the
numerical features of a robot contains at least 32 · 5 = 160 bits of
data, which can exceed the bandwidth available in most SRSs. For
instance, the method of [24] limits the messages to 16 bits.

We argue that using less processed features, such as the numer-
ical ones, can leave more freedom to the classification methods.
For instance, suppose the machine learning methods with numeri-
cal features implicitly compute a threshold on 𝑓 3, as for 𝐹1. Now
suppose changing the environment where the SRS moves: in the
case of binary features, domain knowledge about the new envi-
ronment and the behavior of the robots in it is needed to decide
if the range [0, 15] cm is still good or if it should be changed. On
the other hand, such domain knowledge is not needed when using
machine learning methods and numerical features: the machine
learning method automatically learns the best threshold for fault
detection. Experimental results of Section 5 confirm this intuition.
This represents one of the main advancements we provide w.r.t. the
method of [24].

3.3 Phase B: Classify
In this phase, each robot classifies the other robots as either faulty
or not based on the features computed as per Section 3.2. To classify
robot 𝑟 𝑗 , robot 𝑟𝑖 must have obtained 𝑘 sets of features about 𝑟 𝑗
in the last𝑊𝑐 seconds. The machine learning classifier receives in
input the 𝑘 sets of features and return a label that classifies 𝑟 𝑗 as
faulty or non-faulty. In this way, 𝑟𝑖 not only considers the last ob-
servation for classification, but exploits data about the evolution of
𝑟 𝑗 ’s behavior during the𝑊𝑐 time window. This phase is completely
different from the corresponding phase of [24], which is based on a
CRM (see Section 2).

3.3.1 Machine Learning Classifiers We consider two supervised
machine learning methods for our fault detection approach: a lo-
gistic regressors and Gradient Boosting Decision Trees (GBDT) [9].
The logistic regressor computes a linear combination of the fea-
tures, then applies a sigmoid function to the result: the output is the
probability that the observed robot is faulty [9]. GBDTs are an en-
semble method composed of weak decision trees. The term "weak"
means that the decision trees have low individual performance. The
trees are ordered: the first one predicts the problem’s solution; the
subsequent ones predict the error made by the preceding ones. The
learning process is iterative, the first weak result gets subsequent
refinements to become, ideally, more and more correct [9].

In both cases, the classification is obtained by applying a thresh-
old 𝑝thresh to the output probability: if the probability is above
the threshold, the observed robot is classified as faulty, non-faulty
otherwise.

The choice of these two machine learning methods aims to give
two very different options for the proposed fault detection approach.
Indeed, they use completely different procedures for the classifi-
cation task, giving them distinct strengths. The logistic regressor
requires very few resources for training and inference. The GBDT,
on the other hand, thanks to its ensemble nature, represents a very
flexible alternative. In fact, depending on the computational capa-
bility of the SRS platforms considered, the number of trees and
their depth can be customized to obtain the best trade-off between
classification accuracy and computational complexity. Note that, for
both methods, training can be performed off-line while inference
will be performed onboard the robots.

3.3.2 Training Dataset Preparation The training datasets for the
machine learning methods are generated in controlled experiments:
the SRS, composed of the union of a set of non-faulty robots and
a set 𝑆faulty of faulty robots, executes a given task and phase A
of the proposed fault detection algorithm. Given robot 𝑟 𝑗 , it is
known if 𝑟 𝑗 ∈ 𝑆faulty and, in that case, its fault. At the end of
the experiments, all the observations of the non-faulty robots are
gathered, labeled, and added as data points to the training dataset.
Every time robot 𝑟𝑖 observed robot 𝑟 𝑗 𝑘 times in the time window of
𝑊𝑐 seconds, a data point is added to the training dataset: it contains
the 𝑘 sets of features obtained from the 𝑘 observations and a label
indicating if 𝑟 𝑗 ∈ 𝑆faulty . When numerical features are used, they
are standardized to reduce the impact of their different scales [2].
Then, the dataset is balanced by random undersampling non-faulty
data points, depending on the probability 𝑝faulty of a robot to belong
to 𝑆faulty .

3.3.3 Model Evaluation and Training The model evaluation phase
exploits the training dataset to choose the best classifier for fault
detection in a given task; namely the best machine learning method
with a specific combination of values of the hyperparameters. Re-
calling Section 3.3.1, this phase compares the logistic regressor
and the GBDTs with different combinations of hyperparameters.
It exploits the ten-fold cross-validation technique to obtain ten
evaluations for each classifier [9]. The metric used for evaluation is
the F-score, a nonlinear combination of precision and recall, com-
puted as: 𝐹𝛽 = (1 + 𝛽2) · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2 ·𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+𝑟𝑒𝑐𝑎𝑙𝑙 . For each classifier,
the mean of the ten evaluations is computed. The classifiers with
the lowest means are discarded to have only four remaining. The
evaluations of these remaining classifiers are compared with the
Wilcoxon signed-rank test [28], a non-parametric statistical test.
The obtained p-values are corrected with the Bonferroni-Holm
method [11], necessary to maintain the desired level of significance
𝛼 with multiple tests. When the number of statistical tests is high,
the Bonferroni-Holm method can considerably reduce the number
of results that refuse the null hypothesis. Thus, in model evaluation,
the statistical tests are used only with four classifiers.

After this process, two scenarios are possible. In the first scenario,
there is statistical evidence that one classifier is better than the
others: in this case, it is chosen for fault detection in the given task.
In the second scenario, there is a set of classifiers for which there
is no statistical evidence to prove that one is better than the others.
In this case, the most resource- and time-saving classifier in the set
is chosen. In particular, the logistic regressor is preferred over the
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GBDTs. If there are only GBDTs, the one with the lowest number
of decisions is chosen. In a GBDT, the number of decisions is the
product of the two hyperparameters, i.e., the number and depth of
the trees.

The chosen classifier is then trained on thewhole training dataset.

3.4 Phase C: Voting
In this phase, similar to the one of [24], each robot communicates
to the other robots its individual classifications on the observed
robots. Then, the SRS computes a collective classification on each of
its robots. The individual classification of robot 𝑟𝑖 on the observed
robot 𝑟 𝑗 is computed by majority voting starting from the classifi-
cations of 𝑟𝑖 on 𝑟 𝑗 made during phase B in the current cycle. For
instance, suppose that during phase B, 𝑟𝑖 classified 𝑟 𝑗 seven times
as faulty and six times as non-faulty. At the beginning of phase C,
the individual classification of 𝑟𝑖 on 𝑟 𝑗 is faulty.

Each robot 𝑟𝑖 maintains in memory two lists: 𝐿𝑖 and 𝐿𝑐 . 𝐿𝑖 con-
tains the robot’s individual classifications and the ones it received.
For each classification, 𝑟𝑖 stores the observing robot, the observed
robot, and the label (faulty or non-faulty). If a robot 𝑟𝑖 receives a
collective classification on 𝑟 𝑗 (illustrated below in this paragraph),
it adds it to 𝐿𝑐 and removes all the individual classifications of 𝑟 𝑗
from 𝐿𝑖 . When a robot has 5 or more individual classifications from
different robots on robot 𝑟 𝑗 , it generates a collective classification,
obtained by a majority voting scheme on the individual classifica-
tions. Then, it adds the collective classification to 𝐿𝑐 , sends it to the
other robots, and removes all the individual classifications on 𝑟 𝑗
from 𝐿𝑖 . This procedure exploits the distributed nature of the SRS
to obtain robust classifications.

4 EXPERIMENTAL SETUP
We implement the proposed fault detection approach in ARGoS, a
discrete-time multi-robot simulator [19]. The control cycles of each
robot are executed every 0.1 s and the proposed fault detection
algorithm is executed at each control cycle. In order to compare the
results, we maintain the same experimental setup described in [24].

Environment and robots The environment is a square arena of
side 3 m, delimited by walls. The SRS is composed of 𝑛 = 20 e-pucks
[18], equipped with eight infrared proximity sensors, two wheels
with sensors and actuators, and RAB sensors and actuators. The in-
frared proximity sensors have a range of [0, 10] cm and an additive
noise with uniform distribution between -1 cm and +1 cm.
The RAB sensors have a range of [0,100] cm. For a more realistic
simulation, a noise vector with module sampled from N(0, 1) cm
and angle uniformly sampled between −𝜋 and +𝜋 is added to each
RAB reading. The wheels sensors detect velocity and have an ad-
ditive uniform noise within -0.1 cm/s and +0.1 cm/s, while a noise
with distribution N(0, 0.1) cm/s is added to the wheels actuators.

Behaviors We consider four different behaviors (tasks) of the
SRS: aggregation, dispersion, flocking, and homing.

In aggregation, the robots use the RAB sensors to detect other
robots, then move toward them. The main objective of this behavior
is to bring all the robots of the SRS close to each other.

In dispersion, the robots move randomly: at each control cycle,
they go straight with a certain probability; with a complementary

probability, they change their heading to a certain angle, sampled
from a uniform distribution between−𝜋 and +𝜋 . Themain objective
of this behavior is to make the robots move in the environment so
that the SRS occupies the entire available space.

In flocking, each robot uses the RAB sensors to detect the other
robots’ speeds and headings. Then, it moves toward the other robots
while trying to uniform its speed and heading to the ones of the
other robots. The main objective of this behavior is to make the
entire SRS move in formation.

In homing, the robots use the RAB sensors to receive messages
from the beacon, a non-moving robot. When they receive the mes-
sages, they use the RAB sensors to localize the beacon and move
toward it. While they do not receive messages from the beacon, the
robots follow the dispersion behavior. The main objective of this
behavior is to aggregate all the robots near the beacon.

In all the behaviors, the robots use the infrared proximity sensors
to avoid collisions.

Faults The proposed fault detection approach is tested with
seven different faults: bact, lact, ract, pmax, pmin, prnd, and rofs.

lact, ract, and bact stop the movement of the left wheel, the right
wheel, and both wheels, respectively.

pmin makes all the proximity sensors of the faulty robot always
signal that there are no obstacles nearby. pmax makes all the prox-
imity sensors of the faulty robot always signal that the robot is
colliding. prnd makes all the proximity sensors of the faulty robot
return values sampled from a uniform distribution in the range of
the proximity sensor.

rofs adds a value sampled from a uniform distribution in the
range [75, 100] cm to each RAB range measurement and a value
sampled from a uniform distribution in the range [−𝜋, +𝜋] to each
RAB bearing measurement. Our robots use the RAB board both as
a sensor and an actuator for the swarm behaviors and as a commu-
nication mean for the fault detection approach. In our experiments,
we consider faults in the RAB board affecting only the swarm be-
haviors. This is not a big limitation, because robots that are not
able to transmit well-formed payloads (or don’t communicate at
all) can be easily recognized.

Parameters The values of the parameters used in the implemen-
tation of the proposed fault detection approach are the following:
𝑇cycle = 10 s, 𝑇clas = 9 s, 𝑇exp = 600 s,𝑊𝑙 = 10 s,𝑊𝑠 = 5 s,𝑊𝑐 = 1 s,
𝑘 = 10, 𝑝thresh = 0.5, 𝑝faulty = 20%, 𝛼 = 0.05, and 𝛽 = 2.

The values of the parameters used in the experimental setup are
the following: 𝑛 = 20, 𝑣𝑚𝑎𝑥 = 5 cm/s, and ℎ = 5.3 cm.

Training datasets We generate a training dataset for each combi-
nation of behavior and type of features (binary or numerical). We
obtain it by running several simulations and capturing the robots’
observations from control cycle 1000 to control cycle 1200, i.e., 100
s after the beginning of the simulation and for 20 s. In this way, we
reduce the effects of the random initial positions of the robots.

Model evaluation and training For each combination of behavior
and type of features, we use the corresponding training dataset to
obtain a classifier through the model evaluation and training phase
of Section 3.3.3. We use the F-score for model evaluation. The main
objective of the fault detection approach is to detect the faults in
the SRS: 𝛽 must be greater than 1. On the other hand, if 𝛽 is too
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large, false alarms lose importance. Therefore, we implement the
F-score with 𝛽 = 2. For each combination of behavior and type of
features, we report in Table 1 the classifier chosen in the model
evaluation phase.

Experiments We run two sets of experiments. In the first set, as
in [24], there is a single faulty robot in the SRS. For each combi-
nation of fault, behavior, and type of features, we run 30 experi-
ments of 6000 control cycles (𝑇exp = 600 s), ignoring the first 450
cycles. In this way, we reduce the effects of the random initial
positions of the robots. We compare these results with the ones
reported in [24]. In the second set, each robot can be faulty with
a probability of 𝑝 . The values of 𝑝 used in the experiments are
𝑝 = 0.1, 0.2, . . . , 0.9. The fault is chosen randomly (uniformly) from
the set {bact, lact, ract, pmin, pmax, prnd, rofs}. For each combina-
tion of the values of 𝑝 , behavior, and type of features, we run 30
experiments of 6000 control cycles (𝑇exp = 600 s), ignoring the
first 450 cycles. We analyze these experiments’ results to assess
if the value of 𝑝 influences the performance of the proposed fault
detection approach. The results of this second set of experiments
cannot be directly compared against [24] because it has not been
shown to deal with multiple faulty robots.

5 EXPERIMENTAL RESULTS
We call CRM-B, ML-B, and ML-N the fault detection approach in
[24], the proposed fault detection approach with binary features,
and the proposed fault detection approach with numerical features,
respectively. The performance of the proposed fault detection ap-
proaches is based on the F-score with 𝛽 = 2 calculated on the
collective classifications computed in phase C.

5.1 Single Fault Experiments
In Figure 1, we report the results of the experiments with a single
faulty robot. Each subplot represents the results of the experiments
on a behavior. The x-axis contain the different faults; the y-axis con-
tain the F-scores with 𝛽 = 2. For each combination of behavior and
fault, there are three boxplots representing the results of the three
fault detection approaches. The leftmost one, in blue, is relative to
CRM-B, the central one, in orange, to ML-B, and the rightmost one,
in green, to ML-N.

We compare these three sets of results using permutation sta-
tistical tests [7] to assess the presence of a statistically significant
difference in their means. We correct the obtained p-values with
the Bonferroni-Holm method so that the overall significance level
for all the tests on a single behavior is 𝛼 . We report the full re-
sults of these tests in the Supplementary Material. The analysis of
the results highlights that ML-B and ML-N outperform CRM-B in
60.71% (17 over 28) and 71.43% (20 over 28) of the combinations,

Binary features Numerical features
Aggregation Logistic regressor GBDT, 14 trees of depth 4
Dispersion Logistic regressor Logistic regressor
Flocking GBDT, 4 trees of depth 4 Logistic regressor
Homing GBDT, 4 trees of depth 4 GBDT, 12 trees of depth 4

Table 1: Chosen classifiers.

respectively. ML-B and ML-N have, in most cases, similar perfor-
mance. Even when there is a statistically significant difference in
their means, it is often marginal.

There are only a few cases in which these two approaches per-
form very differently: in all of them, ML-N outperforms ML-B. For
instance, in the aggregation behavior, ML-N is nearly perfect in de-
tecting faults in the wheels actuators, while ML-B struggles in some
experiments, reaching F-score values lower than 0.2. For some com-
binations, some fault detection approaches have bad performance.
We further inspect them.

Aggregation behavior with pmin fault. From a visual inspection
of the simulations, the main difference between the faulty robot
and the non-faulty robots is that the former does not keep a min-
imum security distance from the other robots. Indeed, its faulty
proximity sensors never detect other robots; therefore, it never tries
to avoid collisions with them. The binary features cannot capture
the difference between two robots keeping the minimum security
distance and two colliding robots: feature F1 captures if the nearest
neighbor is in the range [0, 15] cm, but this feature is true in both
situations. On the other hand, the numerical feature 𝑓 3 measuring
the minimum distance of a neighbor can capture this difference.
Hence, ML-N has significantly better results than the two fault
detection approaches based on binary features.

Dispersion behavior with rofs fault. The dispersion behavior does
not exploit the Range And Bearing (RAB) sensor. Therefore, the
behaviors of faulty and non-faulty robots are the same, making it
impossible to detect the fault.

Flocking behavior with pmin fault. In the flocking behavior, all the
robots try to move in the same direction with the same speed. This
behavior makes collisions less frequent, making the faulty robot
almost unrecognizable, and all the three fault detection approaches
perform poorly.

Homing behavior with rofs fault. When a robot does not receive
the beacon message, it executes the dispersion behavior. Thus, with
rofs fault, if the faulty robot does not receive the beaconmessage, the
fault detection approaches perform as for the dispersion behavior.
If the faulty robot receives the beacon message, the random offset
of the RAB makes it move in a random direction, likely different
from the correct one. From an external point of view, this random
movement is is indistinguishable from the dispersion behavior of a
robot that does not receive the beacon message. In both cases, it is
hard for the fault detection approaches to detect the fault.

5.2 Multiple Faults Experiments
In Figure 2, we report the results of the experiments with multiple
faulty robots. Each pair of plots represents the results of the experi-
ments on a behavior and using ML-B (above) and ML-N (below).
The x-axes contain the values of 𝑝 , and the y-axes contain the F-
scores with 𝛽 = 2.
We run three sets of statistical tests:

I For each combination of behavior and type of features, we
run permutation tests to assess the presence of a statisti-
cally significant difference in the means of the results with
different values of 𝑝 (the probability of a robot to be faulty).
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(a) Aggregation (b) Dispersion

(c) Flocking (d) Homing

Figure 1: Experiments with a single faulty robot.

II For each combination of behavior and type of features, we
run permutation tests to assess the presence of a statistically
significant difference in the variances of the results with
different values of 𝑝 .

III For each combination of behavior and value of 𝑝 , we run
one-sided permutation tests to assess if ML-N obtains results
with a higher mean than ML-B. The choice of one-sided
tests stems from the results of single fault experiments and
from visual inspection of the results in Figure 2. Indeed, they
suggest that, in most cases, ML-N performs at least equally,
if not better, than ML-B.

We correct the obtained p-values with the Bonferroni-Holmmethod
so that, in sets I and II, the overall significance level for all the tests
on a combination of behavior and type of features is 𝛼 . In set III,
the overall significance level for all the tests on a single behavior
is 𝛼 . We report the full results of these tests in the Supplementary
Material.

The results on set I highlight that the value of 𝑝 does not influence
the mean of the performance of our fault detection approaches. The
only exception is in the experiments on the dispersion behavior
with 𝑝 = 0.1, whose results are significantly higher than those with
other values of 𝑝 . By inspecting these experiments, we observe

that, in 70% of them, the pmin and rofs faults are absent. When
they are present, there are at least two other faults in other robots.
Therefore, the effects of pmin and rofs faults on the results are
marginal in these experiments. BothML-B andML-N have relatively
bad results in single fault experiments with these two faults: thus,
their marginal impact on these experiments explain why the results
are significantly better than with other values of 𝑝 .

The results on set II highlight that, in most cases, the value of
𝑝 does not influence the variance of the performance of the fault
detection approaches. There is a significant difference between
the variance of the results with lower values of 𝑝 and those with
higher values of 𝑝 in three combinations of behavior and type
of features: aggregation with binary features and flocking with
both binary and numerical features. We present the analysis for
the first combination; the analysis of the other two is similar. The
single fault experiments highlight that ML-B has low performance
in detecting the pmin fault on aggregation behavior. When 𝑝 is
low, a small number of robots is faulty. If one of the faults is pmin,
it considerably decreases the performance of the proposed fault
detection approach. Since in the other experiments the performance
is high, this increases the variability. When 𝑝 is high, a large number
of robots is faulty. Each faulty robot has a 1

7 probability of having
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(a) Aggregation (b) Dispersion (c) Flocking (d) Homing

Figure 2: Experiments with multiple faulty robots.

a pmin fault: the ratio of robots with pmin faults is low. Therefore,
the pmin faults only marginally decrease the performance of the
proposed fault detection approach and the variability remains low.

The results on set III highlight that ML-N significantly outper-
forms ML-B on aggregation and flocking behavior.

6 DISCUSSION
CRM-B [24] requires explicit domain knowledge to be designed
correctly: the binary features are identified and thresholded in an
ad hoc way by using information about the task, the robots, and
the environment; and the setting of the parameters of the CRM [24,
Table 2] requires deep knowledge about this model. On the other
hand, the domain knowledge required by ML-N is minimal: the
numerical features are simply derived from raw measurements of
the robots, while the choice of the best machine learning methods
and their hyperparameters occur in the model evaluation phase,
which requires minimal human intervention. Indeed, this phase
only requires the user to choose feasible combinations of hyper-
parameters. Also the parameters of the chosen machine learning
method are computed automatically in the training phase. However,
the model evaluation phase and the training require labeled data;
on the contrary, the CRM does not require a training dataset. ML-B
lies between CRM-B and ML-N: it still uses domain knowledge to
identify the binary parameters and their thresholds, but it exploits
data to automatically choose the best machine learning methods
and their hyperparameters.

The statistical analysis of the results of the experiments high-
lights that the proposed fault detection approaches, both with bi-
nary and numerical features, often outperform CRM-B in the setup
described in Section 4, when a single robot of the SRS is faulty.
Thus, in this setup, it is possible to substitute domain knowledge
with the knowledge automatically learned from data, keeping high
performance. This is a promising result for real-world applications:
given their complexity, eliciting domain knowledge could be hard.
On the other hand, data can often be easily obtained by running
controlled experiments. In addition, our approach can deal with
multiple faulty robots.

However, further tests are necessary before the implementation
of the proposed fault detection approach in real-world applications.
The behaviors studied in this paper are simpler than those required
in many real-world applications, where also combinations of simple

behaviors could be needed. Also, results obtained in simulation do
not necessarily transfer to the real world [10].

We implemented and tested the proposed fault detection ap-
proach only with two supervised machine learning methods. We
speculate that further studies involving other machine learning
methods could improve the flexibility of the proposed approach.

It is possible to easily extend the proposed fault detection ap-
proach to perform both exogenous and endogenous fault detection:
the only requirement is that each robot can measure its own fea-
tures. This extension could improve or worsen the performance
of the fault detection approach, depending on the setup. Indeed,
while it adds a new and unique point of view on each robot, it could
also give some incorrect information if the robot observing itself
has faulty sensors. For instance, a faulty robot with broken speed
sensors and actuators could detect it is moving and classify itself
as non-faulty, even if it is not actually moving.

7 CONCLUSION
In this paper, we proposed a novel distributed fault detection ap-
proach for SRSs, which exploits machine learning methods to clas-
sify a robot as faulty or non-faulty. Also, we proposed new numeri-
cal features, more primitive than the binary features used in [24]
to leave more freedom to the machine learning methods. The pro-
posed approach relies on data to select the best machine learning
method (and its hyperparameters) and to train it. This reduces the
amount of required explicit domain knowledge. Also the processing
of the measurements to obtain numerical features requires minimal
domain knowledge. The statistical analysis of the results, exploiting
permutation tests, shows that the proposed fault detection approach
outperforms the one described in [24] in several settings and that
its performance remains robust also for multiple faulty robots in
the SRS. Also, the performance of the proposed approach improves
when using numerical features instead of binary features.
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