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ABSTRACT
This paper introduces a method to explain MADRL agents’ behav-
iors by abstracting their actions into high-level strategies. Particu-
larly, a spatio-temporal neural network model is applied to encode
the agents’ sequences of actions as memory episodes wherein an
aggregating memory retrieval can generalize them into a concise
abstract representation of collective strategies. To assess the ef-
fectiveness of our method, we applied it to explain the actions of
QMIX MADRL agents playing a StarCraft Multi-agent Challenge
(SMAC) video game. A user study on the perceived explainability
of the extracted strategies indicates that our method can provide
comprehensible explanations at various levels of granularity.
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1 INTRODUCTION
Multi-agent Deep Reinforcement Learning (MADRL) [5, 20, 40] has
been demonstrated to solve complex real-world problems such as
real-time strategic (RTS) games [3, 8, 22] against human players.
However, MADRL models use black-box neural networks which
learnmassively distributed representations, making the explanation
of the learned knowledge challenging [14, 21, 25, 28, 38]. Although
various Explainable AI (XAI) [1, 13, 33, 41] methods have been used
for interpreting Deep Reinforcement Learning (DRL) [7, 11, 16, 19,
39], existing approaches for explaining MADRL models are still
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lacking and limited only to offer insights into the agents’ coop-
erative behaviors [9, 37] rather than explaining their coordinated
sequences of actions or strategies.

This study aims to explain MADRL models’ behavior by inter-
preting sequences of actions across multiple agents, employing an
explanation by simplification [17] approach to translate low-level
primitive actions into high-level abstract sequences. Specifically,
we introduce a spatio-temporal neural network model based on
a modified Episodic Memory–Adaptive Resonance Theory (EM-
ART) [32, 36] for encoding and generalizing sequences of actions
performed by MADRL agents across multiple episodes. We also
employ a time-based memory retrieval procedure [4, 10] to gen-
eralize encoded actions over time into short abstract sequential
patterns, along with a two-stage process for transforming episodes
into sequence of significant and unique events.

Empirical evaluation using the StarCraft Multi-Agent Challenge
(SMAC) [23] game environment demonstrates that our approach
simplifies agent actions into comprehensible strategies. In our pre-
vious work [35], we focused on explaining a simple 4t scenario with
four siege tanks in the SMAC environment. In this paper, we extend
the task into a more complex 4t8sp scenario. A comprehensive user
study is also included in this paper to assess the perceived explain-
ability of the strategies derived from agents’ action sequences.

2 METHODOLOGY
Our proposed framework for explaining opaque MADRL models
consists of two main stages, outlined as follows.
Step 1: Memory Encoding. The learned behaviours of the MADRL
agents, in terms of sequences of actions performed, are encoded
using an episodic memory model, such as EM-ART, which learns
the salient action patterns over time.
Step 2: Abstracting the Learned Knowledge. The generalized
joint actions and sequences learned in the episodic memory models
are extracted and further abstracted into high-level strategies for
explanation.

During the memory encoding, traces of actions of the pre-trained
MADRL agents are firstly transferred into EM-ART as a memory
model to capture and generalize events across space, time, and
actions, in the form of episodes (sequences of action events). EM-
ART stores events and episodes by combining two fusion ART net-
works [30, 32]: one for encoding events and the other for episodes [26,
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36]. In addition, time stamps of the action events are explicitly en-
coded using complement coding in a time input field so that an
interval-based memory retrieval procedure [4, 10] can be applied
to generalize the encoded actions and behaviour patterns of the
agents over a selected time interval into abstract sequential pat-
terns. Finally, the abstracted sequences of action events go through
a two-stage process in which significant events are selected fol-
lowed by the removal of repeated events yielding shorter abstract
sequences of unique significant events.

3 EXPERIMENTS
Based on the StarCraft Multi-Agent Challenge (SMAC) [23] plat-
form, we first applied the proposed method to explain gameplays
in a scenario named 4t, wherein four homogeneous siege tanks
controlled by MADRL performed combat with four symmetrically
positioned enemy units controlled by SC2 AI [2, 12, 15, 34]. We
further conducted experiments based on a more complex 4t8sp sce-
nario, wherein the four tank agents (4t) were tasked to overcome
the enemy units and reach a predefined target location through
eight strategic points (8sp).

Table 1: Awinning episode for the 4t8sp scenario derivedwith
event abstraction over two (or more) agents and episode ab-
straction over time. Legend of actions: N, S, E, andW indicate
move north, south, east, and west respectively; 𝐴𝑖 indicates
attack[enemy_𝑖]; and X indicates no_op.

Time Interval Action Time Interval Action

t1-t4 WN t69-t72 𝐴0
t5-t8 S t73-t76 𝐴3
t9-t16 E t77-t84 XN
t17-t20 NE t85-t88 XW
t21-t24 E t89-t112 XN
t25-t28 N t113-t132 XE
t29-t32 WN t133-t140 XN
t33-t36 EN t141-t148 XE
t37-t48 N t149-t172 XS
t49-t52 NW t173-t184 XE
t53-t56 N t185-t192 XS
t57-t60 𝐴1 t193-t212 XE
t61-t68 𝐴2 t213-t254 XN

For the 4t scenario, we employed QMIX [21] for training the
multi-agent teams. For the 4t8sp scenario, the QMIX agents were fur-
ther controlled by a class of self-organizing neural networks called
Fusion Architecture for Learning and Cognition (FALCON) [29, 31]
through the eight strategic points [6]. Based on the actions per-
formed by the QMIX agents after training, we built EM-ARTmodels
using different settings of vigilance parameters for event learning
and episode learning to study their effects on generalization of
events and episodes. We also conducted analysis to identify specific
values of the abstraction factor that work best for each scenario.

Table 1 provides an abstracted winning episode for the 4t8sp
scenario, extracted from the EM-ART model using the interval-
based memory retrieval algorithm with an abstraction factor of 60.
The table illustrates how a sequence of actions taken by the agents
over 254 time steps can be condensed into 60 time intervals. This

(a) 4t Scenario (b) 4t8sp Scenario

Figure 1: Degree of agreement among participants regarding
clarity, usefulness and user satisfaction that are above the
agreement rating threshold (>4).

shows that the proposed abstraction method can summarize the
complex sequence of the agent actions into a more understandable
form, offering a high level perspective on the agent interactions
and enhancing accessibility for analysis and interpretation.

4 USER STUDY
A user study was conducted by using a method known as Inter-Rater
Agreement Analysis [18, 24, 27] to examine the impact of explaining
action sequences executed by multiple agents in terms of clarity,
usefulness, and user satisfaction. The study was conducted via an
online survey involving a diverse group of participants varying
in age, gender, and familiarity with real-time strategy games. The
survey involved the participants reviewing both unexplained and
explained gameplay videos and responding to six questions for
each of the five distinct games for the SMAC 4t and 4t8sp scenarios.
Ratings were provided on a Likert scale from 1 (Strongly Disagree)
to 5 (Strongly Agree) for assessing the explanation quality.

For the 4t scenario, the respondents shows a high level of agree-
ment on clarity, indicating clear and understandable explanations
for the actions taken. The high agreement on usefulness suggests
that explanations were valuable for understanding actions. Simi-
larly, agreement on user satisfaction indicates satisfaction with the
provided explanations. Overall, the 86.67% agreement reflects a
strong agreement on explanation quality, considering clarity, use-
fulness, and user satisfaction.

For the 4t8sp scenario study, the assessment on clarity and use-
fulness suggests clear explanations and major consensus on their
significance. User satisfaction, though lower than both clarity and
usefulness, remains reasonably high, indicating overall satisfaction
in this more complex scenario. Despite a slightly lower agreement
rate compared to the 4t scenario, the 4t8sp scenario achieves an over-
all agreement of 83.33%, signifying substantial agreement among
respondents. The results suggest that the explanations were overall
well-received and effectively conveyed the sequences of actions
by the agents. These findings thus support the effectiveness of the
explanation system, even in complex scenarios like 4t8sp.
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