
Clique Analysis and Bypassing in Continuous-Time
Conflict-Based Search

Extended Abstract

Thayne T. Walker
University of Denver, Lockheed

Martin Corporation
Denver, USA

thayne.walker@du.edu

Nathan R. Sturtevant
Department of Computing Science,

Alberta Machine Intelligence Institute
(Amii), University of Alberta

Edmonton, Canada
nathanst@ualberta.ca

Ariel Felner
Ben Gurion University
Be’er-Sheva, Israel
felner@bgu.ac.il

ABSTRACT
We study symmetry-breaking enhancements for Continuous-Time
Conflict-Based Search (CCBS), a solver for continuous-time MAPF.
Resolving conflict symmetries in MAPF can require an exponential
amount of work. We adapt known symmetry-breaking enhance-
ments from unit-cost domains for CCBS. We then improve upon
these to produce a new state of the art algorithm: CCBS with dis-
joint k-partite cliques (CCBS+DK). Finally, we show empirically
that CCBS+DK solves for up to 20%more agents in the same amount
of time when compared to previous state of the art.

KEYWORDS
Multi-Agent Pathfinding, Heuristic Search

ACM Reference Format:
Thayne T. Walker, Nathan R. Sturtevant, and Ariel Felner. 2024. Clique Anal-
ysis and Bypassing in Continuous-Time Conflict-Based Search: Extended
Abstract. In Proc. of the 23rd International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10,
2024, IFAAMAS, 3 pages.

1 INTRODUCTION
The objective of multi-agent pathfinding (MAPF) is to find paths for
multiple agents being routed on a graph embedded in a metric space
such that agents’ paths are non-conflicting (i.e., not overlapping).
MAPF has applications in warehouses [11], package delivery [6],
games [4], firefighting [14], search and rescue [15] and intersection
management [7, 18]. We seek optimal solutions to the continuous-
time MAPF problem [1, 19], denoted MAPFR for real-valued action
durations and costs on general graphs.

Continuous-Time Conflict-Based Search (CCBS) [3] is an optimal
solver for MAPFR. CCBS re-formulates the Conflict-Based Search
(CBS) algorithm [16] to allow variable-duration wait actions which
account for continuous-time execution. CCBS was shown to be
effective on settings that are inspired by real-world applications.

Conflict symmetries pose a problem for CCBS. A conflict sym-
metry [10] occurs when agents are situated such that one or more

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), T.T. Walker, N.R. Sturtevant, A. Felner, May 6 – 10, 2024, Auckland, New
Zealand. © 2024 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org).

agents must increase their path cost to avoid conflict. For optimal al-
gorithms like CCBS, many alternate paths must be explored before
proving that the cost increase is necessary. Conflict symmetries can
require an exponential amount of work to resolve [10].We study the
effectiveness of bypassing [5] and biclique constraints [20] in CCBS.
We then combine these techniques with disjoint splitting [2, 9] to
achieve new state of the art results.

2 CONTINUOUS-TIME CBS
CCBS searches on two levels. The high level searches a constraint
tree (𝐶𝑇). Each node 𝑁 in the𝐶𝑇 contains a solution 𝑁 .Π, and a set
of constraints 𝑁 .𝐶 . Each path 𝜋𝑖∈𝑁 .Π of agent 𝑖 in 𝑁 is constructed
using a low-level search which respects constraints. A constraint
blocks an agent from performing action(s) and is defined as a tuple
⟨𝑖, 𝑣, 𝑡1, 𝑡2⟩, where 𝑖 is the agent, 𝑣 is the vertex and (𝑡1, 𝑡2] is the
continuous time range in which the agent must avoid the vertex.
Next, CCBS checks for conflicts between any pairs of paths 𝜋𝑖 and
𝜋 𝑗 in 𝑁 .Π. If 𝑁 .Π contains no conflict, then 𝑁 is a goal node and
CCBS terminates. If 𝑁 .Π contains a conflict, then CCBS performs a
split, where it generates two child nodes 𝑁𝑖 and 𝑁 𝑗 of 𝑁 and adds
constraints 𝑐𝑖 and 𝑐 𝑗 to 𝑁𝑖 .𝐶 and 𝑁 𝑗 .𝐶 respectively. The low level
solver uses safe-interval path planning (SIPP) [12] which treats
the constraints as safe intervals to plan safe paths which avoid the
conflict. CCBS systematically checks for conflicts, generates child
nodes with constraints and re-plans the conflicting paths. CCBS
prioritizes the search by the total cost of 𝑁 .Π. It terminates when a
feasible solution is found.

3 BYPASSING AND BICLIQUE CONSTRAINTS
When a split occurs, the bypass enhancement (BP) [5] inspects the
re-planned paths. If a new path is available which: (1) does not
have an increased cost, (2) respects all constraints and (3) has fewer
conflicts with all agents, this new path is called a bypass. If a bypass
is found, child nodes are not generated, instead, the current node is
updated with the bypass path and re-inserted into the OPEN list.
This enhancement improves performance by avoiding splits in the
CT, eliminating new sub-trees. Our results show that BP is effective
in problem instances with similarities to “classic” MAPF, but less
effective in certain continuous-time settings.

When dealing with agents moving in continuous time and space,
one action taken by an agent may conflict with a set of actions
by other agents. Biclique constraints (BC) [20] computes sets of
one or more new constraints 𝐶𝑖 and 𝐶 𝑗 , for two conflicting agents

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2540

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

5

36

1

4 2

𝑖 𝑗

×××
3×××

1

××× 2

𝑖 𝑗 5

36

×××
4 2

𝑖 𝑗

A

B C

Figure 1: An example of a disjoint split with biclique con-
straints.

by performing bipartite conflict analysis. Although the original
formulation for BC was shown to be very effective in continuous-
time domains with fixed wait actions [20], when arbitrary wait
actions are allowed, we found that BC was often detrimental to
performance. With arbitrary wait times, BC causes agents to wait
for an insufficient amount of time. This causes the conflict to recur
at a slightly later time, resulting in another split in the sub-tree for
the same, slightly delayed actions. However, when BC is combined
with disjoint splitting (DS) [2, 9], disjoint bicliques (DB), there is a
marked improvement. This improvement is possible because of the
positive-negative nature of disjoint splits.

The placement of biclique constraints in a disjoint split is il-
lustrated in Figure 1. Node A is a node in the CT with a conflict
between actions 1 and 5 shown with bold arrows. Nodes B and C
are child nodes. Node B shows the positive constraint for the red
agent in bold for action 1, with negative constraints for the blue
agent’s conflicting actions shown with ‘x’s. The other actions for
the red agent in node B are dashed, meaning that they are no longer
reachable because of the positive constraint. Finally, node C shows
a single negative constraint that mirrors the positive constraint
in node B. When we use a set of negative constraints paired with
a positive one, it avoids further conflicts in the CT, resulting in
potentially exponential amounts of work avoided.

Additionally, when multiple agents conflict with the positively
constrained action, it is helpful to additionally constrain these
agents using negative constraints. We call this approach disjoint
𝑘-agent cliques (DK). For DK, we perform bipartite conflict analysis
for all agents in conflict with the positively-constrained action and
enforce negative, continuous-time constraints for all conflicting
actions for up to all 𝑘 agents. The result is that all agents avoid
performing actions which conflict with the positively-constrained
action, avoiding further splits in the tree.

4 EMPIRICAL RESULTS
We now analyze the enhancements, namely: bypass (BP) and dis-
joint k-partite cliques (DK). Disjoint bicliques (DB) is effective, but

Table 1: Summary of problems solved on 4-, 8-, 16- and 32-
neighbor grid MAPF benchmarks and roadmaps

Graph Type Base BP DK BP+DK

4-neighbor 23,628 24,872 23,642 25,378
8-neighbor 28,216 29,346 28,660 30,110
16-neighbor 25,116 25,634 25,308 26,546
32-neighbor 21,892 21,582 22,416 24,090

Sparse 434 396 440 444
Dense 604 604 630 712
Super-dense 402 402 442 474

less effective than DK, hence, it is omitted from the results. All tests
in this section were performed single-threaded, on cloud compute
instances that report an Intel Xeon 2.5GHz processor. In addition
to three roadmaps: “sparse”, “dense” and “super-dense” [1], we test
our enhancements in all 44 of the MAPF grid benchmarks [17]
in continuous-time domains. Agents are circular, with a radius of√
2/4, but any radius <0.5 could be used. All tests were run by start-

ing with 2 agents and incrementing the number of agents by 2 until
the problem instance became unsolvable in under 30 seconds.

Table 1 shows the total of agents solvable for each problem
category by graph type. The best result is underlined and those
within the 95th percentile of the best are in bold. The label “Base” is
the previous state of the art for CCBS. The first four lines of the table
shows totals for MAPF grid benchmarks with 2𝑘 neighborhood [13]
connectivities, namely 4-, 8-, 16- and 32-neighborhoods. The last
three lines of the table shows results for probabilistic roadmaps [8].
“Sparse”, “Dense” and “Super-dense” roadmaps have a mean vertex
degree of 4.2, 16.7, and 100.4 respectively.

4-neighborhood maps have no crossing edges, hence few oppor-
tunities for biclique constraints to block multiple actions at once. As
the connectivity increases from 8-neighborhood up to super dense
roadmaps, the density of crossing edges increases. As the edge
density increases, the effectiveness of BP decreases, this is because
equivalent-cost alternate paths become scarce so that bypasses can-
not be found. On the other hand, as the edge density increases, the
size of constraint sets produced by biclique constraints increases
dramatically, increasing the effectiveness of DK.

In summary, combining BP with DK consistently beats state
of the art by statistically significant margins. Compared to the
previous state of the art, our enhancements allow solutions for up
to 10% more agents in 32-neighbor grid maps and for up to about
18% more agents in super dense roadmaps.

ACKNOWLEDGMENTS
The research at the University of Denver was supported by the
National Science Foundation (NSF) grant number 1815660 and Lock-
heed Martin Corporation. Research at the University of Alberta was
funded by the Canada CIFAR AI Chairs Program. We also acknowl-
edge the support of the Natural Sciences and Engineering Research
Council of Canada (NSERC). Research at Ben Gurion University
was supported by BSF grant number 2021643.

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2541

REFERENCES
[1] Anton Andreychuk, Konstantin Yakovlev, Dor Atzmon, and Roni Stern. 2019.

Multi-Agent Pathfinding with Continuous Time. In International Joint Conference
on Artificial Intelligence. 39–45.

[2] Anton Andreychuk, Konstantin Yakovlev, Eli Boyarski, and Roni Stern. 2021.
Improving continuous-time conflict based search. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 35. 11220–11227.

[3] Anton Andreychuk, Konstantin Yakovlev, Pavel Surynek, Dor Atzmon, and Roni
Stern. 2022. Multi-agent pathfinding with continuous time. Artificial Intelligence
305 (2022), 103662.

[4] Adi Botea, Bruno Bouzy, Michael Buro, Christian Bauckhage, and Dana Nau.
2013. Pathfinding in games. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[5] Eli Boyarski, Ariel Felner, Guni Sharon, and Roni Stern. 2015. Don’t Split, Try To
Work It Out: Bypassing Conflicts in Multi-Agent Pathfinding. In International
Conference on Automated Planning and Scheduling. 47–51.

[6] Shushman Choudhury, Kiril Solovey, Mykel J Kochenderfer, and Marco Pavone.
2021. Efficient large-scale multi-drone delivery using transit networks. Journal
of Artificial Intelligence Research 70 (2021), 757–788.

[7] Kurt Dresner and Peter Stone. 2008. A multiagent approach to autonomous
intersection management. Journal of artificial intelligence research 31 (2008),
591–656.

[8] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. 1996. Proba-
bilistic roadmaps for path planning in high-dimensional configuration spaces.
IEEE transactions on Robotics and Automation 12, 4 (1996), 566–580.

[9] Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Ariel Felner, Hang Ma, and Sven
Koenig. 2019. Disjoint Splitting for Multi-Agent Path Finding with Conflict-
Based Search. In International Conference on Automated Planning and Scheduling.
279–283.

[10] Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Hang Ma, and Koenig Sven. 2019.
Symmetry-Breaking Constraints for Grid-Based Multi-Agent Pathfinding. In
AAAI Conference on Artificial Intelligence. 6087–6095.

[11] Jiaoyang Li, Andrew Tinka, Scott Kiesel, JosephWDurham, TK Satish Kumar, and
Sven Koenig. 2021. Lifelong multi-agent path finding in large-scale warehouses.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 11272–
11281.

[12] Mike Phillips and Maxim Likhachev. 2011. Sipp: Safe interval path planning for
dynamic environments. In International Conference on Robotics and Automation.
IEEE, 5628–5635.

[13] Nicolas Rivera, Carlos Hernández, and Jorge A Baier. 2017. Grid Pathfinding on
the 2k Neighborhoods.. In AAAI Conference on Artificial Intelligence. 891–897.

[14] Juan Jesús Roldán-Gómez, Eduardo González-Gironda, and Antonio Barrientos.
2021. A survey on robotic technologies for forest firefighting: Applying drone
swarms to improve firefighters’ efficiency and safety. Applied Sciences 11, 1 (2021),
363.

[15] Jürgen Scherer, Saeed Yahyanejad, Samira Hayat, Evsen Yanmaz, Torsten Andre,
Asif Khan, Vladimir Vukadinovic, Christian Bettstetter, Hermann Hellwagner,
and Bernhard Rinner. 2015. An autonomous multi-UAV system for search and
rescue. In Proceedings of the First Workshop on Micro Aerial Vehicle Networks,
Systems, and Applications for Civilian Use. 33–38.

[16] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. 2015. Conflict-
Based Search for Optimal Multi-Agent Pathfinding. Artificial Intelligence Journal
219 (2015), 40–66.

[17] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T.
Walker, Jiaoyang Li, Dor Atzmon, T. K. Satish Kumar, Eli Boyarski, and Roman
Barták. 2019. Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks.
In International Symposium on Combinatorial Search. 151–159.

[18] Jiří Švancara, Marek Vlk, Roni Stern, Dor Atzmon, and Roman Barták. 2019.
Onlinemulti-agent pathfinding. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. 7732–7739.

[19] Thayne T Walker, Nathan R Sturtevant, and Ariel Felner. 2018. Extended In-
creasing Cost Tree Search for Non-Unit Cost Domains.. In International Joint
Conference on Artificial Intelligence. 534–540.

[20] Thayne T Walker, Nathan R Sturtevant, and Ariel Felner. 2020. Generalized and
Sub-Optimal Bipartite Constraints for Conflict-Based Search. In AAAI Conference
on Artificial Intelligence.

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2542

	Abstract
	1 Introduction
	2 Continuous-Time CBS
	3 Bypassing and Biclique Constraints
	4 Empirical Results
	References

