
Clique Analysis and Bypassing in Continuous-Time
Conflict-Based Search

Extended Abstract

Thayne T. Walker
University of Denver, Lockheed

Martin Corporation
Denver, USA

thayne.walker@du.edu

Nathan R. Sturtevant
Department of Computing Science,

Alberta Machine Intelligence Institute
(Amii), University of Alberta

Edmonton, Canada
nathanst@ualberta.ca

Ariel Felner
Ben Gurion University
Be’er-Sheva, Israel
felner@bgu.ac.il

ABSTRACT
We study symmetry-breaking enhancements for Continuous-Time
Conflict-Based Search (CCBS), a solver for continuous-time MAPF.
Resolving conflict symmetries in MAPF can require an exponential
amount of work. We adapt known symmetry-breaking enhance-
ments from unit-cost domains for CCBS. We then improve upon
these to produce a new state of the art algorithm: CCBS with dis-
joint k-partite cliques (CCBS+DK). Finally, we show empirically
that CCBS+DK solves for up to 20%more agents in the same amount
of time when compared to previous state of the art.
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1 INTRODUCTION
The objective of multi-agent pathfinding (MAPF) is to find paths for
multiple agents being routed on a graph embedded in a metric space
such that agents’ paths are non-conflicting (i.e., not overlapping).
MAPF has applications in warehouses [11], package delivery [6],
games [4], firefighting [14], search and rescue [15] and intersection
management [7, 18]. We seek optimal solutions to the continuous-
time MAPF problem [1, 19], denoted MAPFR for real-valued action
durations and costs on general graphs.

Continuous-Time Conflict-Based Search (CCBS) [3] is an optimal
solver for MAPFR. CCBS re-formulates the Conflict-Based Search
(CBS) algorithm [16] to allow variable-duration wait actions which
account for continuous-time execution. CCBS was shown to be
effective on settings that are inspired by real-world applications.

Conflict symmetries pose a problem for CCBS. A conflict sym-
metry [10] occurs when agents are situated such that one or more
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agents must increase their path cost to avoid conflict. For optimal al-
gorithms like CCBS, many alternate paths must be explored before
proving that the cost increase is necessary. Conflict symmetries can
require an exponential amount of work to resolve [10].We study the
effectiveness of bypassing [5] and biclique constraints [20] in CCBS.
We then combine these techniques with disjoint splitting [2, 9] to
achieve new state of the art results.

2 CONTINUOUS-TIME CBS
CCBS searches on two levels. The high level searches a constraint
tree (𝐶𝑇 ). Each node 𝑁 in the𝐶𝑇 contains a solution 𝑁 .Π, and a set
of constraints 𝑁 .𝐶 . Each path 𝜋𝑖∈𝑁 .Π of agent 𝑖 in 𝑁 is constructed
using a low-level search which respects constraints. A constraint
blocks an agent from performing action(s) and is defined as a tuple
⟨𝑖, 𝑣, 𝑡1, 𝑡2⟩, where 𝑖 is the agent, 𝑣 is the vertex and (𝑡1, 𝑡2] is the
continuous time range in which the agent must avoid the vertex.
Next, CCBS checks for conflicts between any pairs of paths 𝜋𝑖 and
𝜋 𝑗 in 𝑁 .Π. If 𝑁 .Π contains no conflict, then 𝑁 is a goal node and
CCBS terminates. If 𝑁 .Π contains a conflict, then CCBS performs a
split, where it generates two child nodes 𝑁𝑖 and 𝑁 𝑗 of 𝑁 and adds
constraints 𝑐𝑖 and 𝑐 𝑗 to 𝑁𝑖 .𝐶 and 𝑁 𝑗 .𝐶 respectively. The low level
solver uses safe-interval path planning (SIPP) [12] which treats
the constraints as safe intervals to plan safe paths which avoid the
conflict. CCBS systematically checks for conflicts, generates child
nodes with constraints and re-plans the conflicting paths. CCBS
prioritizes the search by the total cost of 𝑁 .Π. It terminates when a
feasible solution is found.

3 BYPASSING AND BICLIQUE CONSTRAINTS
When a split occurs, the bypass enhancement (BP) [5] inspects the
re-planned paths. If a new path is available which: (1) does not
have an increased cost, (2) respects all constraints and (3) has fewer
conflicts with all agents, this new path is called a bypass. If a bypass
is found, child nodes are not generated, instead, the current node is
updated with the bypass path and re-inserted into the OPEN list.
This enhancement improves performance by avoiding splits in the
CT, eliminating new sub-trees. Our results show that BP is effective
in problem instances with similarities to “classic” MAPF, but less
effective in certain continuous-time settings.

When dealing with agents moving in continuous time and space,
one action taken by an agent may conflict with a set of actions
by other agents. Biclique constraints (BC) [20] computes sets of
one or more new constraints 𝐶𝑖 and 𝐶 𝑗 , for two conflicting agents
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Figure 1: An example of a disjoint split with biclique con-
straints.

by performing bipartite conflict analysis. Although the original
formulation for BC was shown to be very effective in continuous-
time domains with fixed wait actions [20], when arbitrary wait
actions are allowed, we found that BC was often detrimental to
performance. With arbitrary wait times, BC causes agents to wait
for an insufficient amount of time. This causes the conflict to recur
at a slightly later time, resulting in another split in the sub-tree for
the same, slightly delayed actions. However, when BC is combined
with disjoint splitting (DS) [2, 9], disjoint bicliques (DB), there is a
marked improvement. This improvement is possible because of the
positive-negative nature of disjoint splits.

The placement of biclique constraints in a disjoint split is il-
lustrated in Figure 1. Node A is a node in the CT with a conflict
between actions 1 and 5 shown with bold arrows. Nodes B and C
are child nodes. Node B shows the positive constraint for the red
agent in bold for action 1, with negative constraints for the blue
agent’s conflicting actions shown with ‘x’s. The other actions for
the red agent in node B are dashed, meaning that they are no longer
reachable because of the positive constraint. Finally, node C shows
a single negative constraint that mirrors the positive constraint
in node B. When we use a set of negative constraints paired with
a positive one, it avoids further conflicts in the CT, resulting in
potentially exponential amounts of work avoided.

Additionally, when multiple agents conflict with the positively
constrained action, it is helpful to additionally constrain these
agents using negative constraints. We call this approach disjoint
𝑘-agent cliques (DK). For DK, we perform bipartite conflict analysis
for all agents in conflict with the positively-constrained action and
enforce negative, continuous-time constraints for all conflicting
actions for up to all 𝑘 agents. The result is that all agents avoid
performing actions which conflict with the positively-constrained
action, avoiding further splits in the tree.

4 EMPIRICAL RESULTS
We now analyze the enhancements, namely: bypass (BP) and dis-
joint k-partite cliques (DK). Disjoint bicliques (DB) is effective, but

Table 1: Summary of problems solved on 4-, 8-, 16- and 32-
neighbor grid MAPF benchmarks and roadmaps

Graph Type Base BP DK BP+DK

4-neighbor 23,628 24,872 23,642 25,378
8-neighbor 28,216 29,346 28,660 30,110
16-neighbor 25,116 25,634 25,308 26,546
32-neighbor 21,892 21,582 22,416 24,090

Sparse 434 396 440 444
Dense 604 604 630 712
Super-dense 402 402 442 474

less effective than DK, hence, it is omitted from the results. All tests
in this section were performed single-threaded, on cloud compute
instances that report an Intel Xeon 2.5GHz processor. In addition
to three roadmaps: “sparse”, “dense” and “super-dense” [1], we test
our enhancements in all 44 of the MAPF grid benchmarks [17]
in continuous-time domains. Agents are circular, with a radius of√
2/4, but any radius <0.5 could be used. All tests were run by start-

ing with 2 agents and incrementing the number of agents by 2 until
the problem instance became unsolvable in under 30 seconds.

Table 1 shows the total of agents solvable for each problem
category by graph type. The best result is underlined and those
within the 95th percentile of the best are in bold. The label “Base” is
the previous state of the art for CCBS. The first four lines of the table
shows totals for MAPF grid benchmarks with 2𝑘 neighborhood [13]
connectivities, namely 4-, 8-, 16- and 32-neighborhoods. The last
three lines of the table shows results for probabilistic roadmaps [8].
“Sparse”, “Dense” and “Super-dense” roadmaps have a mean vertex
degree of 4.2, 16.7, and 100.4 respectively.

4-neighborhood maps have no crossing edges, hence few oppor-
tunities for biclique constraints to block multiple actions at once. As
the connectivity increases from 8-neighborhood up to super dense
roadmaps, the density of crossing edges increases. As the edge
density increases, the effectiveness of BP decreases, this is because
equivalent-cost alternate paths become scarce so that bypasses can-
not be found. On the other hand, as the edge density increases, the
size of constraint sets produced by biclique constraints increases
dramatically, increasing the effectiveness of DK.

In summary, combining BP with DK consistently beats state
of the art by statistically significant margins. Compared to the
previous state of the art, our enhancements allow solutions for up
to 10% more agents in 32-neighbor grid maps and for up to about
18% more agents in super dense roadmaps.
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