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ABSTRACT
Anomaly detection in decision-making sequences is a challeng-
ing problem due to the complexity of normality representation
learning, the sequential nature of the task and the difficulty of real-
world implementation. In this work, we propose extracting two
behaviour features: action optimality and sequential association to
detect anomalous behaviour. Our offline imitation learning model is
an adaptation of behavioural cloning with a transformer policy net-
work, where we modify the training process to learn a Q function
and a state value function from normal trajectories.
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1 INTRODUCTION
Anomaly detection for decision-making sequences generated by
goal-oriented agents has not been widely studied. A goal-oriented
agent is capable of making decisions based on its environment
and desired goal. An anomalous decision-making sequence may
indicate a different goal compared to other agents. Examples of
this include malicious taxi drivers who take detours or go through
congested streets to increase their fare [9, 12], or faulty robots that
perform unexpected actions resulting in safety issues [4].

There are three significant challenges in this area. (1) Normality
representation learning: The success of anomaly detection algo-
rithms largely depends on a suitable data representation that can
separate anomalous data from normal data. (2) Sequential nature
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Figure 1: A demonstration of our anomaly detection method.
Each decision sequence in the detection window is trans-
formed into a novel two-dimensional feature space: action
optimality and sequential association.

of the decisions: Most anomaly detection methods fail to consider
the sequential nature of the decision-making process [10, 16]. To
predict if one decision is normal or not, a good algorithm needs
to take past observations and actions into consideration [8]. (3)
Real-world implementation: Most existing methods [4, 10, 16] based
on Reinforcement Learning (RL) or Inverse RL [9, 11, 14, 17] are dif-
ficult to implement in the real world due to unrealistic assumptions,
such as having access to environment dynamics, reward signals,
and online interactions with the environment.

In this paper, we propose an online anomaly detection frame-
work (i.e., online detection using a sliding window technique)
targeted at decision-making sequences in a realistic offline im-
itation learning setting, i.e., without access to the reward func-
tion, environment dynamics or online interactions with the en-
vironment, and solely relying on previously recorded sequences.
This paper provides a preliminary view of the problem, please see
[13] for a more extensive study. The source code is available on
https://github.com/chenwang4/OILAD .

2 BACKGROUND
Markov Decision Process (MDP) provides a mathematical frame-
work for RL. MDP can be defined as a tuple (𝑆,𝐴,P, 𝑅,𝛾, 𝑏0), where
𝑆 is a state space, 𝐴 is an action space, P𝑎

𝑠𝑠′ is the transition prob-
ability, 𝑅𝑎𝑠 is the reward, 𝛾 is the discount factor and 𝑏0 (𝑠) is the
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probability of starting at state 𝑠 . The goal of MDP is to find an
optimal policy 𝜋∗ to maximize the expected value of discounted
future rewards. A policy 𝜋 is a distribution over actions given a
state. Each policy is related to one state-value function 𝑣𝜋 (𝑠) and
one action-value function 𝑄𝜋 (𝑠, 𝑎).

3 PROBLEM STATEMENT
We consider RL agents in an MDP environment, defined by a tu-
ple (𝑆,𝐴,P, 𝑅,𝛾, 𝑏0). Goal-oriented agents take actions to maxi-
mize their sum of future rewards

∑𝑡→∞
𝑡 𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ). Each decision-

making sequence 𝜏 with a variable length 𝑇 is composed of state-
action pairs {(𝑠1, 𝑎1), . . . , (𝑠𝑇 , 𝑎𝑇 )}. In our anomaly detection set-
ting, let𝐶𝑛𝑜𝑟𝑚𝑎𝑙 and𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑦 denote the sequence sets for normal
and anomalous agents respectively. We consider that anomalous
behaviours are performed because of agents’ anomalous intention
(reward function) 𝑅𝑎𝑛𝑜𝑚𝑎𝑙𝑦 or unexpected transition P𝑎𝑛𝑜𝑚𝑎𝑙𝑦 . In
this work, we do not know 𝑅 or P from both𝐶𝑛𝑜𝑟𝑚𝑎𝑙 and𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑦 ,
and we can only observe decision-making sequences of agents from
𝐶𝑛𝑜𝑟𝑚𝑎𝑙 . The goal is to extract an appropriate feature representa-
tion 𝜙 (𝜏) from sequences, and find a suitable detection model to
predict the anomalous level 𝑝 such that

𝑝 (𝜙 (𝜏)) < 𝑝 (𝜙 (𝜏 ′)) ∀𝜏 ∈ 𝐶𝑛𝑜𝑟𝑚𝑎𝑙 ,∀𝜏 ′ ∈ 𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑦 (1)

4 METHODOLOGY
We use a variant of traditional behavioural cloning that adds a
transformer block in the policy network to maintain the sequential
nature of decision-making. This model can be used in continu-
ous state space and discrete action space. In order to construct an
expected Q function, we consider the values before the softmax
layer as Q values {𝑞(𝑠, 𝑎)}𝑎∈𝐴 for one state 𝑠 . By computing the
dot product between 𝑞(𝑠, 𝑎) and 𝜋 (𝑎 |𝑠) as Eq. 3, we can derive the
state values 𝑣 (𝑠). We propose two objectives: (1) the Q function can
select the optimal/normal action in a given state, as described in
Eq.2, and (2) the state values for optimal/normal trajectories tend
to be monotonically increasing [12], as described in Eq.4.

𝑞(𝑠, 𝑎∗) > 𝑞(𝑠, 𝑎), ∀𝑎 ≠ 𝑎∗,∀𝑠 ∈ 𝑆 (2)

where 𝑎∗ is the optimal action.

𝑣𝜋 (𝑠) =
∑︁
𝑎

𝜋 (𝑎 |𝑠)𝑞𝜋 (𝑠, 𝑎) (3)

𝑣𝜋 (𝑠1) ≤ 𝑣𝜋 (𝑠2) ≤ · · · ≤ 𝑣𝜋 (𝑠𝑇 ), {𝑠𝑖 }𝑇𝑖=1 ∈ 𝜏∗ (4)
where 𝜏∗ is a sequence that follows the optimal policy. We use two
training objectives to satisfy Eq.2 and Eq.4 respectively. The first
training objective, named action loss, is formulated as:

min
𝜽

𝐻 (𝜋∗ (𝑎 |𝑠) |𝜋 (𝑎 |𝑠, 𝜽 )) − 𝛼𝐻 (𝜋 (𝑠, 𝑎, 𝜽 )) (5)

where𝐻 represents the entropy function. The first term is the cross
entropy of the predicted actions 𝜋 (𝑎 |𝑠) and true actions 𝜋∗ (𝑎 |𝑠).
The second term is the self-entropy of the predicted actions 𝜋 (𝑎 |𝑠),
and 𝛼 > 0 here is a hyper-parameter to decide the level of regulari-
sation. We add the second term to prevent overfitting. The second
objective, named monotonicity loss, is to maximize Spearman’s
rank correlation coefficient between 𝒗𝜏 and 𝒕𝜏 :

max
𝜽

𝑐𝑜𝑣 (𝑟𝑎𝑛𝑘 (𝒗𝜏 ), 𝑟𝑎𝑛𝑘 (𝒕𝜏 ))
𝜎𝑅 (𝒗𝜏 )𝜎𝑅 (𝒕𝜏 )

(6)

where 𝑟𝑎𝑛𝑘 (𝒗𝜏 ) and 𝑟𝑎𝑛𝑘 (𝒕𝜏 ) are the ranks of 𝒗𝜏 and 𝒕𝜏 respectively,
𝑐𝑜𝑣 is the covariance of the ranks, and 𝜎𝑅 (𝒗𝜏 ) and 𝜎𝑅 (𝒕𝜏 ) are the
standard deviations of the ranks.

We first train the policy neural network based on Eq.5 to learn
normal agents’ policy as a good foundation for the next stage. This
step is similar to the regular training in Behavioural Cloning. To
recover the temporal relationship, we then train the model based on
Eq.5 and Eq.6 simultaneously. After training, we can extract two fea-
tures to represent the behavioural normality based on the learned Q
function and the state value function. The feature action optimality
characterises whether the agent is selecting the normal/optimal
action at each state and the feature sequential association charac-
terises whether the agent is making the right sequential decisions
given the context of desired normal goals.

At the detection stage, we first generate the boundary from the
normal features and then we can transform any new windowed
trajectory to the latent space, as shown in Figure 1. If the behaviour
features in the latent space exceed the pre-trained boundary, the
trajectory is identified as an anomaly; or otherwise, as normal.

5 EXPERIMENTS
We apply our method and other baselines to three different datasets
including two real-life datasets [1, 2] and one simulated dataset from
the Gym environment [3]. To provide a comprehensive evaluation,
we generate two types of anomalies, policy anomalies and perturbed
anomalies, for each dataset. Our experimental results show that the
anomaly detection performance of our method achieves an average
improvement of around 14.15% in 𝐹1 score compared to existing
state-of-the-art methods including [5–7, 15].

6 DISCUSSION
Effectiveness of Behavioural Cloning. Behavioural cloning has mas-
sive advantages in terms of simplicity and efficiency, but it also
suffers from the difficulty of recovering from distribution shifts.
However, the robustness to distribution shifts is not part of the per-
formance evaluation when we switch our perspective from offline
imitation learning to the problem of anomaly detection. Further-
more, the compounding error can even potentially help to detect
abnormal patterns (out-of-distribution) from training/normal data.

Monotonicity. The reason why we use monotonicity loss to train
the model is that we try to recover the true state value function.
However, in the offline imitation learning setting, it is not feasible to
recover the true state value functionwithout knowing the transition
probability or having access to the environment. Our prior work
proposed the monotonicity property of state values based on the
Bellman equation: that state values of trajectories performed by
the optimal policy should tend to be monotonically increasing [12].
We believe this property can be beneficial to approximate the true
state value function.
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