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ABSTRACT
Reaching a consensus on the team plans is vital to human-AI coordi-
nation. We suggest incorporating external models to assist humans
in understanding the intentions of AI agents when the AI has no
explainable plan to communicate. In this paper, we propose a two-
stage paradigm that first trains a Theory of Mind (ToM) model
from collected offline trajectories of the target agent and utilizes
the model in the process of human-AI collaboration by real-timely
displaying the future action predictions of the target agent. We
further implement a transformer-based predictor as the ToM model
and develop an extended online human-AI collaboration platform
for experiments. Experimental results validate that our ToM model
can significantly improve team performance, demonstrating the
potential of our paradigm in human-AI collaboration.
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1 INTRODUCTION
Human-AI Collaboration has been receiving increasing research
interest [2, 5, 19] and the techniques are applied in various domains,
such as robots [7, 9], data science [22], and decision making [10, 14].

Unlike competitive or solo tasks, AI agents and humans share the
same goal in collaboration tasks, naturally encouraging the team
to reach a consensus on the joint plan to maximize the common
payoff. An intuitive way to resolve this dilemma is communica-
tion, which is natural in human-human collaboration and has been
widely applied in Human-Agent Collaboration through graphical
or textual ways [1, 13, 17, 18, 21, 24]. However, in Deep Reinforce-
ment Learning (DRL), a class of algorithms that have been widely
used in many challenging robotic tasks [4, 9, 15], the model may be
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Figure 1: A representative case where the human and the
robot want to switch their positions. The potential difficulty
in the collaboration is reaching an agreement on the selection
of routes without collision.

opaque and only output an atomic action at each time step with no
human-explainable plans to show. Though the explainable AI has
been proven important for human-AI collaboration [16], there may
exist a trade-off between the explainability and performance [6, 8].
Therefore, how to conduct communication when the AI agent is
not explainable is still an open problem.

To mitigate this predicament, we suggest building an external
Theory of Mind (ToM) model to predict the future actions of the
AI agent and assist humans in recognizing its intentions. As the
example shown in Figure 1, the ToMmodel that has watched records
of the robot can predict its future actions and helps the human better
coordinate. Carrying on this idea, we propose a two-stage paradigm
to assist humans in the human-AI collaboration. For the agent we
want to predict, which is denoted as the target agent hereinafter, we
first collect the trajectories by pairing the target agent with other
agents to form a dataset and then train a stand-alone ToM model
from its historical data to model the behavior of the target agent.
In the human-AI collaboration stage, we utilize the ToM model
to predict the future action sequence of the target agent from the
states of the ongoing task and visually display the predictions.

Our proposed paradigm is distinguished from existing techniques
such as plan communication [13, 17] by the following characteris-
tics: (1) It does not require any prior knowledge of the environment
and predicts at the action level, ensuring its availability in general
DRL scenarios. (2) The ToM model is trained from offline data and
can be regarded as a complete post-process, providing compatibility
for all DRL algorithms. (3) We treat the agent as a gray or black
box, making the ToM model eligible to be a third-party assistant.

To evaluate our paradigm, we implement a transformer-based
ToM model and develop an extended online experimental platform
that is capable of prediction display and user study based on the
Overcooked environment [2], which is a two-player collaborative
game that has been widely used for studying human-AI collabora-
tion [3, 20, 23, 25]. Our paradigm and model are comprehensively
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tested with two types of DRL agents across multiple layouts with
an attached user study. The results demonstrate that our method
can improve collaboration performance in various situations.

2 METHODOLOGY
We gather trajectory data from both self-play and cross-play. In
self-play, the target agent plays with a copy of itself, where the
trajectories demonstrate the ideal plan in the agent’s opinion. In
cross-play, the target agent is paired with a group of partners to
obtain the behavior pattern when cooperating with others, where
collaborationmay not be ideal. Specifically, we train an independent
group of agents with various DRL algorithms and pick 3 check-
points with different skill levels from each agent to form the partner
population. For each selected pair of agents, we collect trajectories
under different settings, including the roles of agents and whether
the partner agent is deterministic.

We then train a transformer-based ToM model to predict the
next 𝑙 actions of the target agent from recent game history, in-
cluding a short sequence of actions and states. The model aims to
perform action-level predictions, employing an MLP as the out-
put layer, and is optimized by minimizing the Cross-Entropy loss:
L = −∑𝑙

𝑖=1
∑ |A𝐴𝐼 |

𝑗=1 𝑦𝑖 𝑗 𝑙𝑜𝑔(𝑦𝑖 𝑗 ). Where A𝐴𝐼 is the action space of
the AI agent, 𝑦𝑖 𝑗 denotes the predicted probability of 𝑗-th action,
𝑦𝑖 𝑗 is 1 for the correct action and 0 otherwise.

3 EXPERIMENTS
3.1 Experimental setup

Figure 2: Extended platform
based on Overcooked [2].

To inspect the effective-
ness of our human-AI
collaboration framework,
we conduct experiments
in the Overcooked envi-
ronment [2], which has
been widely used for
studying zero-shot coor-
dination and human-AI
collaboration [2, 3, 11, 12,
20, 23, 25]. To provide
action predictions in the
human-AI collaboration
process, we extend the

front-end user interface to show predictions by depicting successive
arrows and icons with gradually varied sizes and transparency at
estimated locations, as illustrated in Figure 2.

We incorporate two types of agents in the experiment: Self-play
(SP) and Fictitious Co-Play (FCP) [20] and run experiments on 5
layouts: Coordination Ring, Double Rings, Double Counters, Matrix,
Clear Division, testing the capabilities of agents across various chal-
lenges. Human subjects are divided into 3 groups regarding the
predictor settings: ToM model, random, and no predictor. They
then play with the two agents in all layouts. After each episode,
participants are asked to give a subjective assessment by filling
out a questionnaire with questions corresponding to four indica-
tors: satisfaction with the partner, satisfaction with the predictor,
situational awareness, and cooperation efficiency.
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Figure 3: Average rewards with standard error bar.

3.2 Results
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Figure 4: Average scores in
user assessment across lay-
outs.

We present the average re-
ward on each layout and
across layouts in Figure 3.
We first perform an ANOVA
to compare the rewards in
different ToM settings and
the results show statistically
significant differences for
both SP (𝐻 (2, 𝑛 = 430) =

10.83, 𝑝 = .004) and FCP
(𝐻 (2, 𝑛 = 430) = 15.23, 𝑝 <

.001). Subsequent ANOVA
conducted on the results in

each layout show that significant differences exist on the first 4
layouts (with a significance level of 𝑝 < .05, same hereinafter), and
pairwise comparisons with the T-test show that the ToM model im-
proves the performance than the no-predictor baseline, even after
the Benjamini-Hochberg correction for false discovery control.

To investigate the factors of performance improvements in pos-
itive situations, we scrutinize user assessments and present the
average scores on the first 4 layouts across settings in the Figure 4.
Humans are significantly more satisfied with the ToM model than
the random baseline (SP: 𝑡 (224) = 2.33, 𝑝 = .021; FCP: 𝑡 (226) =

4.16, 𝑝 < .001), underscoring that humans care about the predic-
tions. The ToMmodel also significantly improves situational aware-
ness compared to both the random baseline and the no-predictor
setting, indicating the efficacy of our paradigm in assisting humans
in predicting the intentions of the AI agent.

4 CONCLUSION
In this paper, we introduce a novel paradigm for human-AI col-
laboration that integrates a ToM model, trained from the offline
trajectories of the target AI agent, into the collaboration process.
Experimental results validate our paradigm and the efficacy of the
ToM models implemented in both quantitative rewards and subjec-
tive measurement. Our method and platform lay the groundwork
for further research on assisting humans to understand AI inten-
tions in human-AI collaboration.
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