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ABSTRACT
Nash Equilibrium (NE) is the canonical solution concept of game
theory, which provides an elegant tool to understand the rationali-
ties. Computing NE in two- or multi-player general-sum games is
PPAD-Complete. Therefore, in this work, we propose REinforce-
ment Nash Equilibrium Solver (RENES), which trains a single policy
to modify the games with different sizes and applies the solvers on
the modified games where the obtained solution is evaluated on the
original games. Specifically, our contributions are threefold. i) We
represent the games as 𝛼-rank response graphs and leverage graph
neural network (GNN) to handle the games with different sizes as
inputs; ii) We use tensor decomposition, e.g., canonical polyadic
(CP), to make the dimension of modifying actions fixed for games
with different sizes; iii) We train the modifying strategy for games
with the widely-used proximal policy optimization (PPO) and ap-
ply the solvers to solve the modified games, where the obtained
solution is evaluated on original games. Extensive experiments on
large-scale normal-form games show that our method can further
improve the approximation of NE of different solvers, i.e., 𝛼-rank,
CE, FP and PRD, and can be generalized to unseen games.
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1 INTRODUCTION
Game theory provides a pervasive framework to model the interac-
tions between multiple players [6]. The canonical solution concept
in non-cooperative games, i.e., the players try to maximize their
own utility, is Nash Equilibrium (NE), where no player can change
its strategy unilaterally to increase its own utility [13]. According
to Roger Myerson, the introduction of NE is a watershed event for
game theory and economics [12]. NE provides an impetus to under-
stand the rationalities in much more general economic contexts and
lies at the foundation of modern economic thoughts [7, 12]. Mixed
strategy NE exists in any game with finite players and actions [13].
However, from an algorithmic perspective, computing NE in two-
player or multi-player general-sum games is PPAD-Complete [4, 5].
In two-player zero-sum games, NE can be computed in polyno-
mial time via linear programming. In more generalized cases, the
Lemke–Howson algorithm is the most recognized combinatorial
method [10], while using this algorithm to identify any of its po-
tential solutions is PSPACE-complete [7].

To address the above issues, we propose REinforcement Nash
Equilibrium Solver (RENES). Our main contributions are three-fold.
First, we represent the games with different sizes as𝛼-rank response
graphs, which are used to characterize the intrinsic properties of
games [14], and then leverage the graph neural network (GNN) to
take the 𝛼-rank response graphs as inputs. Second, we use tensor
decomposition, e.g., canonical polyadic (CP), to make the modifying
actions fixed for games with different sizes, rather than changing a
payoff value once. Third, we train the modifying strategy for games
with the widely-used proximal policy optimization (PPO) and apply
the solvers to solve themodified games, where the obtained solution
is evaluated on original games. Extensive experiments on large-
scale normal-form games, i.e., 3000 sampled games for training and
500 sampled games for testing, show that our method can further
improve the approximation of NE of different solvers, i.e., 𝛼-rank,
CE, FP and PRD, and can be generalized to unseen games. To the
best of our knowledge, this work is the first effort in game theory
that leverages RL methods to train a single strategy for modifying
the games to improve the solvers’ approximation performances.

Extended Abstract  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2552

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


2 PRELIMINARIES
Consider the 𝐾-player normal-form game, where each player 𝑘 ∈
[𝐾] has a finite set of actions A𝑘 . We use A−𝑘 to represent the
action space excluding the player 𝑘 , also for other terms. We denote
the joint action space as A = ×𝑘∈[𝐾 ]A𝑘 . Let 𝒂 ∈ A be the joint
action of 𝐾 players and𝑀 (𝒂) = ⟨𝑀𝑘 (𝒂)⟩ ∈ R𝐾 is the payoff vector
of players when playing the action 𝒂. A mixed strategy profile is
defined as 𝜋 ∈ Δ(A), which is a distribution over A and 𝜋 (𝒂) is
the probability that the joint action 𝒂 will be played. The expected
payoff of player 𝑘 ∈ [𝐾] is denoted as𝑀𝑘 (𝜋) = ∑

𝒂∈A 𝜋 (𝒂)𝑀𝑘 (𝒂).
Given a mixed strategy 𝜋 , the best response of player 𝑘 ∈ [𝐾] is
defined as BR𝑘 (𝜋) = argmax𝜇∈Δ(A𝑘 ) [𝑀𝑘 (𝜇, 𝜋−𝑘 )]. A factorized
mixed strategy 𝜋 (𝒂) = ∏

𝑘∈[𝐾 ] 𝜋
𝑘 (𝑎𝑘 ) is Nash Equilibrium (NE)

if 𝜋𝑘 ∈ BR𝑘 (𝜋) for 𝑘 ∈ [𝐾]. We define the NashConv value as
NC(𝜋) =

∑
𝑘∈[𝐾 ] 𝑀

𝑘 (BR𝑘 (𝜋), 𝜋−𝑘 ) − 𝑀𝑘 (𝜋) to measure the dis-
tance of the mixed strategy from an NE. Computing NE in general-
sum games is PPAD-Complete [5].

3 RENES
We introduce the proposed REinforcement Nash Equilibrium Solver
(RENES). The general procedure of RENES is displayed in Figure 1.
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Figure 1: Flow of RENES.

To handle the games with different sizes, we represent the games
as the 𝛼-rank response graphs, which is shown to represent the
intrinsic properties of games in [14], and then use graph neural
network (GNN) [8, 16, 17] to extract the features of games. We
note that GNN can efficiently handle the graphs with different
sizes [11], as it takes the neighboring information to update the
node embeddings. For the action space, we consider a more compact
action space with tensor decomposition [9]. Specifically, we use the
canonical polyadic (CP) decomposition of the payoff table𝑀 and
set the rank 𝑟 to be fixed and the action of RENES is the coefficients
over 𝑟 :

𝑀 ≈
∑︁𝑟

𝑖=1
𝜆𝑖 ·𝑚1,𝑖 ⊗𝑚2,𝑖 ⊗ · · · ⊗𝑚𝐾+1,𝑖 , (1)

where 𝝀 = ⟨𝜆𝑖 ⟩, 𝑖 = 1, · · · , 𝑟 are the weights of the decomposed
tensors and𝑚𝑘,𝑖 , 𝑘 ∈ {1, . . . , 𝐾 +1} are the factors which are used to
modify the game. For the decomposition, the weight 𝝀 = 11. Given
any arbitrary weight 𝝀, we can reconstruct the payoff tensor with
the reconstruction oracle R𝑀 (𝝀). Therefore, we let the modified
oracle O to modify the weights and update the game by

𝑀𝑡 = 𝑀𝑡−1 + 𝜂 · R𝑀 (𝝀) . (2)
1The tensor decomposition is implemented by TensorLy (https://github.com/tensorly/
tensorly). Other implemented decomposition methods can also be used.
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Figure 2: Results of RENES in simple case.

With the tensor decomposition, we can use a fixed size of action
space of RENES, specified by 𝑟 . The tensor decomposition can be
viewed as a simple method of the abstraction [1, 2], and more
sophisticated and decomposition methods can be considered in
future works [3]. Then, RENES will optimize the modification of
the games formultiple steps, e.g., 20, where the optimization process
is formulated as a Markov Decision Process (MDP). We train the
parameters in RENES with Proximal Policy Optimization [15].

4 EXPERIMENTS
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Figure 3: Results of RENES in general case

In this section, we present the experimental results of RENES on
large-scale normal-form games. We consider two cases: i) simple
case where all games have the same size to verify the idea of
modifying the games to boost the performance of inexact solvers,
and ii) general case where the games have different sizes to verify
that the design of RENES can handle the game with different sizes.
Extensive experiments on large-scale normal-form games show
that our method can further improve the approximation of NE of
different solvers and can be generalized to unseen games.
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