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ABSTRACT
Wepresent an algorithm to solve for local Nash Equilibrium trajecto-
ries in the multi-agent motion planning problem for self-interested
agents. Our method models the problem as a concurrent game
where each agent’s action consists of choosing a cubic spline de-
fined by a set of waypoints. We observe that with certain kinds of
cost functions, the resulting game has the structure of a potential
game which is guaranteed to reach an equilibrium even when each
agent myopically improves their own cost without considering the
costs of other agents. Our algorithm uses simultaneous gradient
descent with independent per-agent step sizes to converge to local
Nash Equilibrium trajectories. We demonstrate the algorithm can
scale to very long horizons through simulated experiments in the
electric vertical take-off and landing vehicles (eVTOL) domain.
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1 INTRODUCTION
Many of the domains autonomous agents are being developed for
are self-interested, agents will choose actions that are most ben-
eficial to their own interests instead of maximizing a desirable
quantity like social welfare. While multi-agent motion planning
is a well-studied problem with several elegant solutions e.g. [2]
[17] [15], most existing work assumes all agents will execute the
plan they are provided. When a human operates a car, drone, or
electric vertical take-off and landing vehicle (eVTOL), they may
disregard a provided plan in order to take an alternative plan that
is more beneficial to them. As we expect similar behavior from self-
interested autonomous agents, our algorithms must provide plans
that guarantee each agent is acting optimally given all other agent
strategies. This desirable property is called a Nash Equilibrium (NE)
which is computationally hard [3]. Additionally, since multi-agent
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systems often suffer the “curse of dimensionality", the state space
scales exponentially with the number of agents, we argue a higher
level of abstraction than operating on the control sequences can
enable greater scalability relative to existing planners.

Our Contribution: In this paper, we argue the multi-agent
motion planning problem should be solved at a higher level of
abstraction. Instead of having each agent optimize over their con-
trol sequence, they choose a set of waypoints that are interpolated
through natural cubic splines. Each agent independently minimizes
their cost obtained by sampling the interpolated trajectory at a high
frequency through simultaneous gradient descent. Under common
assumptions of each agent’s cost function, the game is a potential
game and this process will converge to a local NE, which gives
stable open-loop trajectories for a low level trajectory tracking
controller to execute. This is in contrast to existing approaches that
implicitly satisfy the dynamics constraints by extending methods
like DDP/iLQR (e.g. [4] [10] [7]) or explicitly satisfy them through
constraints on optimization problems (e.g. [19] [1]). This bi-level
formulation is similar to [14] but we utilize a gradient based al-
gorithm which converges due to the potential game formulation
instead of relying on an off-the-shelf non-convex optimizer.

2 POTENTIAL GAMES ON CUBIC SPLINES
Each agent 𝑖 ∈ [𝑁 ] where [𝑁 ] := {1, . . . , 𝑁 } chooses a strategy
consisting of 𝑆 + 1 points 𝑝𝑖 := (𝑝1

𝑖
, . . . , 𝑝𝑆+1

𝑖
) ∈ 𝐴𝑖 := R(𝑆+1)𝑑

equally spaced in time for game horizon 𝑇 and dimension 𝑑 . These
points uniquely define a natural cubic spline [11] with 𝑆 segments
which guarantees 𝐶2 continuity. Let (𝑥𝑖 , ¤𝑥𝑖 , ¥𝑥𝑖 ) ∈ 𝑋𝑖 := R3𝑑𝑚 de-
note the position, velocity, and acceleration sequence of length
𝑚 of the agent, obtained by sampling the interpolated spline at a
frequency 𝑇

𝑚 . Let 𝐴 :=
∏

𝑖∈[𝑁 ] 𝐴𝑖 denote the joint action space
and let 𝑋 :=

∏
𝑖∈[𝑁 ] 𝑋𝑖 denote the joint state space. Note the map

𝑀 : 𝐴 → 𝑋 that produces the position, velocity, and acceleration
sequences for all agents from the joint action is linear.

For notational ease, we define the cost functions over the posi-
tion, velocity, and acceleration sequence (𝑥, ¤𝑥, ¥𝑥), which is justified
since𝑀 is linear. Each agent has a personal cost (e.g. distance to goal,
energy consumption) 𝐽 per

𝑖
: 𝑋𝑖 → R and pairwise cost (e.g. collision

cost) 𝐽 pair
𝑖, 𝑗

: 𝑋𝑖 ×𝑋 𝑗 → R. Let 𝐽 pair𝑖
(𝑥𝑖 , 𝑥−𝑖 ) =

∑
𝑗∈{−𝑖 } 𝐽

pair
𝑖, 𝑗

(𝑥𝑖 , 𝑥 𝑗 )
and let 𝐽𝑖 (𝑥, ¤𝑥, ¥𝑥) = 𝐽

per
𝑖

(𝑥𝑖 , ¤𝑥𝑖 , ¥𝑥𝑖 ) + 𝐽
pair
𝑖

(𝑥𝑖 , 𝑥−𝑖 ) be agent 𝑖’s to-
tal cost function. Additionally, we make the following assump-
tions (1) each 𝐽𝑖 is continuously differentiable and (2) the pairwise
cost functions are symmetric i.e. 𝐽 pair

𝑖, 𝑗
(𝑥𝑖 , 𝑥 𝑗 ) = 𝐽

pair
𝑗,𝑖

(𝑥 𝑗 , 𝑥𝑖 ). Us-
ing these assumptions and the cost decomposition into pairwise
and personal functions it is straightforward to show the game is
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Figure 1: Snapshots of the trajectory of a simulated 3 agent
eVTOL scenario. Each agent is softly constrained to flywithin
the UAM corridors depicted by the colored volumes and is
attempting to reach the associated colored goal marked with
an x.

a potential game [13] (see [19] [10] [18]). This model modifies
the standard definition of a potential differential game [6] to pa-
rameterize trajectories with cubic splines. Formally, let the tuple
Γ = ( [𝑁 ], 𝑆,𝑇 , {𝐽 per

𝑖
}𝑖∈[𝑁 ] , {𝐽

pair
𝑖

}𝑖∈[𝑁 ] ) denote a motion plan-
ning game.

2.1 Simultaneous Gradient Descent
In order to improve a candidate strategy 𝑝𝑖 , Each agent simultane-
ously computes the gradient of their cost function 𝐽𝑖 with respect
to each of their spline control points using chain rule.

∇𝑝𝑖 𝐽𝑖 (𝑀 (𝑝)) = 𝑀𝑇∇𝑧𝑖 𝐽𝑖 (𝑀 (𝑝)) (1)

Each agent takes a small independent step 𝛼𝑖 in the direction of
−∇𝑝𝑖 𝐽𝑖 . Only after the step do the agents re-synchronize to ob-
tain the new strategy profiles of each other agent. Since iterated
best response converges to NE in potential games [16] [12], it is
straightforward to extend the argument to prove as long as 𝛼𝑖 is
appropriately small, this step decreases the potential function and
will converge to a local optimum of the potential function. Local
optimality is a sufficient condition to guarantee the joint strategy
is a local NE since no agent has a nearby improving move. Just as
the gradient descent algorithm achieves practical success in many
non-convex optimization problems e.g. [8], we observe practical
success in this setting.

3 EXPERIMENTS
We validate the feasibility of our method by generating motion
plans for eVTOL trajectories where each agent is encouraged (but

not constrained) to remain within predefined “sky-lanes" or UAM
corridors. Autonomous electric vertical take-off and landing ve-
hicles (eVTOL) are expected to be deployed in a wide range of
domains. For example, disaster relief and law enforcement [5], and
for use as air-taxis in urban areas [9], also referred to as urban air
mobility (UAM). Each of these environments include other self-
interested agents and their planners must be capable of reasoning
over the goals of these other agents. While NASA and the FAA
are still refining implementation details around UAM, initial plans
confine the vehicles to UAM corridors, a sort of “sky-lane" for traffic
to follow [9]. These vehicles must take off and land vertically from
established vertiports, and future plans for traffic control involve
sharing flight plans with other vehicles in a form of V2V communi-
cation. These considerations make our method a natural candidate
to solve for local NE trajectories in this domain.

We model the multi-agent eVTOL motion planning problem as
a motion planning game. The personal cost function is a weighted
sum of the following terms; the squared distance of the final posi-
tion to a pre-defined goal position (𝑥𝑚

𝑖
− 𝑔𝑖 )2, the squared speed

of the eVTOL
∑
𝑘∈[𝑚] ¤𝑥𝑘𝑖 , the squared acceleration of the eVTOL∑

𝑘∈[𝑚] ¥𝑥𝑘𝑖 , and the minimum squared distance to a UAM corri-
dor

∑
𝑘∈[𝑚] 𝛿 (𝑥𝑘𝑖 ,𝐶)

2 where 𝐶 ⊂ R𝑑 denotes the set of corridor
space and 𝛿 denotes the euclidean distance function. The pairwise
cost function is an exponential decay on the negative absolute
distance between agents, minus some minimum defined safety dis-
tance

∑
𝑘∈[𝑚] exp(−[|𝑥𝑘𝑖 −𝑥𝑘

𝑗
| −𝑑]). An example solved trajectory

can be found in figure 1. The splines in this problem have 6 seg-
ments and are are initialized as a linear interpolation from each
agent’s starting position to their goal position. The horizon𝑇 of this
problem is 400 seconds. Any method that operates directly on the
control sequence would have orders of magnitude more variables
to optimize over due to the long horizon of this problem, whereas
our method solves this example in less than 2 seconds.

4 CONCLUSION
The higher level of abstraction provided by modeling the multi-
agent motion planning problem as a potential game on cubic splines
allows for solving games with significantly longer horizons than
existing approaches in the literature. We utilize the practical success
of gradient descent to converge to local NE of the game.

In the future, we will investigate expanding our methods to
enable more complex specification such as those with a variable
arrival time. Many other simple improvements can be considered
such as allowing agents to have non-uniform splines, different
choices of boundary conditions, and different numbers of spline
segments which would help model a broader and more realistic
range of possible joint trajectories.
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