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ABSTRACT
Mean Field Games (MFGs) have the ability to handle large-scale
multi-agent systems, but learning Nash equilibria in MFGs remains
a challenging task. In this paper, we propose a deep reinforce-
ment learning (DRL) algorithm that achieves population-dependent
Nash equilibrium without the need for averaging or sampling from
history, inspired by Munchausen RL and Online Mirror Descent.
Through the design of an additional inner-loop replay buffer, the
agents can effectively learn to achieve Nash equilibrium from any
distribution, mitigating catastrophic forgetting. The resulting policy
can be applied to various initial distributions. Numerical experi-
ments on four canonical examples demonstrate our algorithm has
better convergence properties than SOTA algorithms, in particular
a DRL version of Fictitious Play for population-dependent policies.
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1 INTRODUCTION
Multi-agent systems (MAS) [9] are prevalent in real-life scenar-
ios involving a large number of players, such as flocking [7, 21],
traffic flow [3], and swarm robotics [6], among others. The study
of MAS has garnered significant attention throughout history. As
the number of players increases in these multi-agent systems, scal-
ability becomes a challenge [20, 25]. However, under symmetry
and homogeneity assumptions, mean field approximations offer an
effective approach for modeling population behaviors and learning
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decentralized policies that do not suffer from issues of the curse of
dimensionality and non-stationarity.

Mean field games (MFGs) [2, 5, 15, 16] provide a framework for
large-population games where agents are identical in their behav-
iors (policy) and only interact through the distribution of all agents.
This implies that, as the number of agents grows, the influence of
an individual agent becomes negligible, reducing the interactions
among agents to that between a representative individual and the
population distribution. The main solution concept in MFGs corre-
sponds to a Nash equilibrium, which represents the situation where
no player has an incentive to deviate from its current policy unilat-
erally. Recently, several learning methods have been proposed to
solve MFGs; see e.g. [17] for a survey. The most basic one relies on
fixed point iterations, which amounts to iteratively updating the
policy of a player and the mean field (MF). However, convergence
of Banach-Picard fixed point iterations relies on a strict contraction
condition [11, 19]. This condition necessitates Lipschitz continu-
ity with sufficiently small Lipschitz constants, which often fails to
hold [1, 8].

To address this limitation, several approaches have been pro-
posed, usually based on some form of smoothing. Fictitious play
(FP) [4, 14, 24] and Online Mirror Descent (OMD) [12, 13, 22, 23]
are two effective strategies for learning equilibria in MFGs. How-
ever, FP requires storing all historical best responses and sampling
from the best response pool during execution, while OMD requires
averaging historical Q functions which is not feasible for neural net-
works. Moreover, the existing literature often assumes that agents
always start from a fixed initial distribution.

2 ALGORITHM
In this paper, we propose a deep reinforcement learning (DRL)
algorithm that achieves population-dependent Nash equilibrium
without the need for averaging or sampling from history, inspired
by Munchausen RL and OMD. Instead of keeping copies of history
neural networks and summing the outputs in previous OMD-based
algorithm [22], the regularized Q-function defined in this paper
can mimic the summation

∑𝑘−1
𝑖=0 𝑄𝑖 by using implicit regularization

thanks to a Kullback-Leibler (KL) divergence between the new
policy and the previous one. We derive, in our MF context, the
equivalence between regularized Q and cumulative Q values.
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(a) Evolution process (b) Exploitability (fixed 𝜇0)

(c) Exploitability (multiple 𝜇0) (d) Exploitability (multiple 𝜇0)

Figure 1: Example 1: Exploration in one room. (a): density
evolution using the policy learnt by M-OMD, starting from
the 𝜇0 used for (b). (b): exploitability vs training iteration for
a single 𝜇0. (c): average exploitability when training over 5
different 𝜇0 (single run of each algo.). (d): averaged curve over
5 runs and std dev.

(a) Evolution process (b) Exploitability (fixed 𝜇0)

(c) Exploitability (multiple 𝜇0) (d) Exploitability (multiple 𝜇0)

Figure 2: Example 2: Exploration in four connected rooms. (a):
density evolution using the policy learnt by M-OMD, starting
from the 𝜇0 used for (b). (b): exploitability vs training itera-
tion for a single 𝜇0. (c): average exploitability when training
over 5 different 𝜇0 (single run of each algo.). (d): average over
5 runs & std dev.

In addition, through the design of an additional inner-loop replay
buffer, the agents can effectively learn to achieve Nash equilibrium
from any distribution, mitigating catastrophic forgetting.

3 EXPERIMENT
Environments. Exploration is a canonical problem in MFG [10],
in which a large group of agents tries to uniformly distribute into
empty areas but in a decentralized way. In this section, we intro-
duce two variants, with different geometries of domain. The first is
in a big empty room, and the second is in four connected rooms,
which makes the problem much more challenging. In each exper-
iment, we explore two different scenarios respectively. The first
scenario, referred to as fixed 𝜇0 in the sequel, where the population
always starts from a fixed initial distribution. The second scenario,
referred to as multiple 𝜇0 aims to examine the effectiveness of the
master policy. In this scenario, we set different initial distributions
simultaneously used for training. Instead of training multiple Nash
equilibria with different networks, the master policy aims to use
one single network to learn the equilibrium policies for different
initial distributions. Intuitively, population-independent policies
cannot perform well in this scenario (unless the equilibrium policy
does not vary when the initial distribution changes, which amounts
to saying that there are no interactions).

Baselines. We compare our algorithm with 4 baselines, includ-
ing several SOTA algorithms in the domain of Deep RL for MFGs.
In the figures, vanilla FP (V-FP) refers to an adaptation of (tabular)
FP from [24] to deep neural networks. V-FP uses classic fictitious
play to iteratively learn the Nash equilibrium, implicitly assuming
agents always start from a fixed distribution. Master FP (M-FP)
is the population-dependent FP from [23], which aimed to handle
any initial distribution via FP. Vanilla OMD1 (V-OMD1) is the
Deep OMD introduced in [18] based on Munchausen trick. Vanilla
OMD2 (V-OMD2) is our algorithm without the input of MF state,
while our full algorithm is calledMaster OMD (M-OMD). With
this terminology, M-FP and M-OMD learn population-dependent
policies, while V-FP, V-OMD1 and V-OMD2 do not. V-OMD2 can be
viewed as an ablation study of our main algorithm (M-OMD), where
we remove the distribution dependence to see the performance.

4 CONLUSION
This paper presents an algorithm called Master OMD (M-OMD) for
computing population-dependent Nash equilibria in MFGs, which
is more efficient than the SOTA algorithm (M-FP). By extending the
Munchausen OMD algorithm to population-aware functions, we
propose an effective Q-updating rule that enables the realization
of this algorithm. In contrast to stationary MFGs and finite hori-
zon MFGs assuming a fixed initial distribution, our work focuses
on models where the initial population is a priori unknown and
evolves. Extensive numerical experiments demonstrate clearly the
advantages of our proposed M-OMD algorithm over baselines. We
leave for future work the theoretical analysis, such as a proof of
convergence, perhaps under monotonicity conditions. Furthermore,
it would be interesting to extend the algorithm to other settings,
such as multi-population MFGs.
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