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ABSTRACT
Diffusion one-sided matching aims at incentivizing more partici-

pants to match so as to improve overall matching result. Existing

works have tried to add constraints on Top Trading Cycles to ob-

tain the incentive, but it only works in trees. In this paper, we first

propose a mechanism named Swap With Neighbors (SWN), which

can work in any graph structure and intuitively satisfy incentive

compatibility and the tightest stability (first defined here) in the

new setting. Then we find a natural improvement of SWN called

Leave and Share which not only reaches the same properties as

SWN but also provides an obvious efficiency difference.
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1 INTRODUCTION
Mechanism design over social networks incentivizes participants

to invite their friends to form a larger market so that participants

can receive better outcomes[2, 3, 6]. However, inviting more partic-

ipants is not always beneficial to the inviters. In one-sided match-

ing, the well-known Top Trading Cycle (TTC) mechanism gives a

unique truthful, stable, and optimal solution [4, 5], but TTC failed

to incentivize the participants to invite others because an invitee

might compete with her inviters for the same match [1].

To design the incentive, Kawasaki et al. [1] provide strategy-

proof solutions by restricting each agent’s match domain and re-

quiring the network to be trees. Our work will further improve the

matching by relaxing the restrictions to general social networks and

giving agents more matching choices. The challenge for designing
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a satisfying mechanism is that we cannot tell whether an agent’s

invitation will harm herself or those who invited her without fix-

ing a matching mechanism. It seems that a natural way to find a

better mechanism is through trial and error. However, this is not

feasible in practice, since the space and description of the matching

mechanism are exponential in the number of participants.

In this paper, we propose two mechanisms to incentivize agents

to enlarge the game for a better result. The first mechanism is

called Swap With Neighbors (SWN), which only allows each agent

to match with her neighbors. To further improve the matching

result, we design another mechanism called Leave and Share (LS),

which allows matched agents to share their unmatched neighbors

with others. By doing so, the later matched agents will have more

choices, which improves their matching. Both SWN and LS incen-

tivize invitation and give the most stable solution under networks.

2 THE MODEL
We consider a diffusion one-sided matching problem denoted by

an undirected graph 𝐺 = (𝑁, 𝐸), which contains 𝑛 agents 𝑁 =

{1, . . . , 𝑛}. Each agent 𝑖 ∈ 𝑁 is endowed with an indivisible item ℎ𝑖
and 𝐻 = {ℎ1, . . . , ℎ𝑛} is the set of all items. We define agent 𝑖 as 𝑗 ’s

neighbor if there is an edge 𝑒 ∈ 𝐸 between agent 𝑖 and 𝑗 , and let

𝑟𝑖 ⊆ 𝑁 be 𝑖’s neighbor set. Each agent 𝑖 ∈ 𝑁 has a strict preference

≻𝑖 over 𝐻 , and we use ⪰𝑖 to represent the weak preference. Denote
agent 𝑖’s private type as 𝜃𝑖 = (≻𝑖 , 𝑟𝑖 ) and 𝜃 = (𝜃1, · · · , 𝜃𝑛) as the
type profile of all agents. Let 𝜃−𝑖 be the type profile of all agents
except for agent 𝑖 . Let Θ be the type profile space of all agents.

In a matching mechanism, each agent is required to report her

type. We denote agent 𝑖’s reported type as 𝜃 ′
𝑖
= (≻′

𝑖
, 𝑟 ′
𝑖
) (reporting

neighbor set is treated as inviting neighbors in practice). For a

given 𝜃 ′, we generate a directed graph 𝐺 (𝜃 ′) = (𝑁 (𝜃 ′), 𝐸 (𝜃 ′)),
where edge ⟨𝑖, 𝑗⟩ ∈ 𝐸 (𝜃 ′) if and only if 𝑗 ∈ 𝑟 ′

𝑖
. Different from the

traditional setting, we assume only a subset of the agents 𝑁0 ⊆ 𝑁 is

initially in the game, and the others need the existing participants’

invitation to join the game. Under 𝜃 ′, we say agent 𝑖 is qualified if

and only if there is a path (a chain of invitation) from an agent in

𝑁0 to 𝑖 in 𝐺 (𝜃 ′). Let 𝑄 (𝜃 ′) be the qualified agent set under 𝜃 ′.

Definition 2.1. A diffusion one-sided matching mechanism
is an allocation policy 𝜋 = (𝜋𝑖 )𝑖∈𝑁 , where 𝜋𝑖 : Θ → 𝐻 satisfies:

(1) for all agents 𝑖 ∈ 𝑁 , 𝜋𝑖 (𝜃 ′) ∈ 𝐻 , and 𝜋𝑖 (𝜃 ′) ≠ 𝜋 𝑗 (𝜃 ′) if 𝑖 ≠ 𝑗 .

(2) for all qualified agents 𝑖 ∈ 𝑄 (𝜃 ′), 𝜋𝑖 (𝜃 ′) is independent of
the reports of all unqualified agents.
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(3) for all unqualified agents 𝑖 ∉ 𝑄 (𝜃 ′), 𝜋𝑖 (𝜃 ′) = ℎ𝑖 .

Next, we define properties for a desirable matching mechanism.

Definition 2.2. A diffusion one-sided matching mechanism 𝜋

is individually rational (IR) if for all 𝑖 ∈ 𝑁 , all 𝜃𝑖 ∈ Θ𝑖 , and all

𝜃 ′−𝑖 ∈ Θ−𝑖 , we have 𝜋𝑖 (𝜃𝑖 , 𝜃 ′−𝑖 ) ⪰𝑖 ℎ𝑖 .
Definition 2.3. A diffusion one-sided matching mechanism 𝜋 is

incentive compatible (IC) if for all 𝑖 ∈ 𝑁 , all 𝜃 ′−𝑖 ∈ Θ−𝑖 and all

𝜃𝑖 , 𝜃
′
𝑖
∈ Θ𝑖 , we have 𝜋𝑖 (𝜃𝑖 , 𝜃 ′−𝑖 ) ⪰𝑖 𝜋𝑖 (𝜃

′
𝑖
, 𝜃 ′−𝑖 ).

For stability, we define Stable-CC which requires the blocking

coalition to be a complete component.

Definition 2.4. Given an allocation 𝜋 (𝜃 ), we say a set of agents

𝑆 ⊆ 𝑁 (with item set 𝐻𝑆 ⊆ 𝐻 ) is a blocking coalition under
complete components for 𝜋 (𝜃 ) if 𝑆 forms a complete component

in𝐺 (𝜃 ) and there is an allocation 𝑧 (𝜃 ) such that for all 𝑖 ∈ 𝑆, 𝑧𝑖 (𝜃 ) ∈
𝐻𝑆 and 𝑧𝑖 (𝜃 ) ⪰𝑖 𝜋𝑖 (𝜃 ) with at least one 𝑗 ∈ 𝑆, 𝑧 𝑗 (𝜃 ) ≻𝑗 𝜋 𝑗 (𝜃 ).

Definition 2.5. We say a mechanism 𝜋 is stable under complete
components (Stable-CC) if for all type profiles 𝜃 , there is no

blocking coalition under complete components for 𝜋 (𝜃 ).

3 THE MECHANISMS
We first propose an intuitive mechanism named Swap With Neigh-

bors, which only allows agents to swap with their neighbors.

Swap With Neighbors (SWN)
(1) Initialize 𝑁𝑜𝑢𝑡 = ∅ and 𝑅𝑖 = 𝑟 ′

𝑖
∪ {𝑖}.

(2) For a given 𝐺 (𝜃 ′), do the below steps until 𝑁𝑜𝑢𝑡 = 𝑁 :

(a) Let each agent 𝑖 ∈ (𝑁 \ 𝑁𝑜𝑢𝑡 ) point to her favorite

item among herself and her neighbors remaining in

the matching 𝑅𝑖 ∩ (𝑁 \ 𝑁𝑜𝑢𝑡 ).
(b) For each cycle 𝐶 , allocate the item to the agent who

points to it and add 𝐶 to 𝑁𝑜𝑢𝑡 .

In SWN, agents’ allocation is determined by trading cycles, which

makes it strategy-proof for the preference report. Since each agent

can only get allocated a house from her neighbors, misreporting on

one’s neighbor set is not beneficial. SWN also satisfies Stable-CC

because a trading cycle within neighbors can always be allocated.

Theorem 3.1. SWN is IR, IC, and Stable-cc.

However, SWN achieves IC and Stable-CC at the cost of efficiency,

as it limits the matching options for agents. To combat this, we

propose another mechanism called Leave and Share. Leave and

Share uses SWN as a base and adds a natural sharing process to

enlarge agents’ selection space, trying to provide a better allocation.

We introduce two notations to simplify our description.

Definition 3.2. Given a set 𝐴 ⊆ 𝑁 , we say 𝑓𝑖 (𝐴) = 𝑗 ∈ 𝐴 is 𝑖’s

favorite agent in 𝐴 if for any agent 𝑘 ∈ 𝐴,ℎ 𝑗 ⪰′
𝑖
ℎ𝑘 .

Definition 3.3. An ordering of agents is a one-to-one function

P : N+ → 𝑁 , where agent P(𝑖) is the 𝑖𝑡ℎ agent in the ordering.

Agents in P are sorted in ascending order by the length of the

shortest path from agent set 𝑁0 to them. Especially, for any agent

𝑖 ∈ 𝑁0, its shortest path length is 0. When multiple agents have the

same length of the shortest path, we use a random tie-breaking.

Leave and Share (LS)
(1) Initialize 𝑁𝑜𝑢𝑡 = ∅ and an empty stack 𝑆 . Define the

top and bottom of 𝑆 as 𝑆𝑡𝑜𝑝 and 𝑆𝑏𝑜𝑡𝑡𝑜𝑚 respectively,

and let 𝑅𝑖 = 𝑟 ′
𝑖
∪ {𝑆𝑏𝑜𝑡𝑡𝑜𝑚, 𝑖}.

(2) While 𝑁𝑜𝑢𝑡 ≠ 𝑁 :

(a) Find the minimum 𝑡 such that P(𝑡) ∉ 𝑁𝑜𝑢𝑡 . Push

P(𝑡) into 𝑆 .
(b) While 𝑆 is not empty:

(i) While 𝑓𝑆𝑡𝑜𝑝 (𝑅𝑆𝑡𝑜𝑝 ) ∉ 𝑆 , push 𝑓𝑆𝑡𝑜𝑝 (𝑅𝑆𝑡𝑜𝑝 ) into 𝑆 .
(ii) Pop off all agents from 𝑆𝑡𝑜𝑝 to 𝑓𝑆𝑡𝑜𝑝 (𝑅𝑆𝑡𝑜𝑝 ), who

already formed a trading cycle 𝐶 following their

favorite agents. Allocate each agent 𝑖 ∈ 𝐶 the item

ℎ𝑓𝑖 (𝑅𝑖 ) . Add 𝐶 to 𝑁 𝑡
𝑜𝑢𝑡 .

(iii) Update the neighbor set of 𝐶’s remaining neigh-

bors by removing𝐶 , i.e., for all 𝑗 ∈ ⋃
𝑖∈𝐶 𝑟 ′

𝑖
\𝑁 𝑡

𝑜𝑢𝑡 ,

set 𝑟 ′
𝑗
= 𝑟 ′

𝑗
\𝐶 .

(c) Add 𝑁 𝑡
𝑜𝑢𝑡 to 𝑁𝑜𝑢𝑡 . Let all remaining neighbors of

𝑁 𝑡
𝑜𝑢𝑡 connect with each other, i.e., they become neigh-

bors of each other. That is, let 𝑋 =
⋃

𝑖∈𝑁 𝑡
𝑜𝑢𝑡

𝑟 ′
𝑖
\𝑁 𝑡

𝑜𝑢𝑡

and for all 𝑗 ∈ 𝑋 , set 𝑟 ′
𝑗
= 𝑟 ′

𝑗
∪ 𝑋 .

Theorem 3.4. For any ordering P, LS is IR, IC, and Stable-CC.

4 OPTIMALITY ANALYSIS
In this section, we run experiments in random graphs to show

the performance of our mechanisms. We define ≻𝑖 ( 𝑗) as the 𝑗𝑡ℎ

favorite item of 𝑖 . Assuming that ℎ𝑖 is ≻𝑖 ( 𝑗) and 𝜋𝑖 (𝜃 ) is ≻𝑖 (𝑘),
we define the ascension of 𝑖 as 𝑑𝑖 = 𝑗 − 𝑘 . The average ascension of

all agents is defined as 𝐷 =

∑
𝑖∈𝑁 𝑑𝑖
𝑛 . We use 𝐷 to measure agents’

satisfaction in a one-sided matching mechanism.

Figure 1: 100 graphs generated for each p to see how D
changes accordingly. The minimum scale for p is 0.02.

To generate random networks, we define the probability of an

edge between any two nodes as 𝑝 . In Figure 1, we generate 100

graphs of 50 nodes with fixed but randomly generated preferences

and adjust 𝑝 to see how 𝐷 changes. When 𝑝 is close to 1, the

performances of LS and SWN are close, and they are the same as

TTC when 𝑝 = 1. Due to the sharing process, LS converges to TTC

faster than SWN.When 𝑝 goes to 0, both LS and SWN have a poorer

performance, because there are fewer neighbors to swap or share.
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