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ABSTRACT
We study candidates-embedded approval-based multiwinner voting.
In this model, we are given a metric 𝑓 on the set of candidates, and
voters are free to approve or disapprove any candidates. The task is
to select a 𝑘-committee that either minimizes the sum of distances
from the committee to all votes (utilitarian rules) or minimizes the
maximum distance from the committee to any vote (egalitarian
rules). The distance from a committee to a vote is measured by
certain set-to-set functions derived from 𝑓 . Previous works have
considered the min, the max, and the sum functions. This paper ex-
amines the Hausdorff function. We show that in general computing
winners under the Hausdorff function is hard, but we also derive
several polynomial-time algorithms for certain special cases.
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1 INTRODUCTION
Approval-based multiwinner voting (ABMV) has experienced a
resurgence in popularity over the past decade due to its wide range
of applications across various AI subareas [3, 7, 13, 22, 26], despite
its historical roots dating back more than two centuries [9, 21, 24].
Canonical ABMV assumes candidates to be indistinguishable. How-
ever, in numerous applications, candidates exhibit correlations, in-
spiring researchers to explore more versatile ABMV models that ac-
count for various types of relations among candidates (see, e.g., [16,
27, 28]). Particularly, Yang [27] proposed a model wherein candi-
dates possess distance relationships. This model finds relevance in
scenarios such as collective selection of travel destinations or vac-
cination locations. Depending on the specific scenario, the distance
between two candidates can represent physical distance, similarity
degree, communication cost, and more. In this model, Yang [27]
studied rules which select a winning 𝑘-committee 𝑤 minimizing
either the sum of the distance from𝑤 to all votes (utilitarian rules),
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or the maximum distance from𝑤 to every vote (egalitarian rules).
These distances are defined by certain set (set-to-set) functions
derived from a metric over candidates. Yang [27] studied the min
function, the max function, and the sum function, obtaining compre-
hensive complexity results for the winner determination problems
in both the general cases and special cases where the candidates
are embedded in discrete metrics, star-metrics, or path-metrics.

Yang’s model is quite general in the sense that it encapsulates
many previously studied problems. For instance, the widely-studied
approval voting (AV) rule and the Chamberlin-Courant approval
voting rule are respectively the utilitarian rule under the sum func-
tion and the utilitarian rule under the min function, when candi-
dates are embedded in a discrete metric. The model is also closely
related to the classic clustering problems 𝑘-Median, 𝑘-Supplier,
and 𝑘-Center. We refer to [27] and references therein for more
detailed discussion.

This paper takes a further step toward a better understanding of
this model by exploring the complexity of the same problems but
with respect to the Hausdorff distance (function), arguably one of
the most appealing concepts to measure similarity between sets.
Since its inception [14, 23], Hausdorff function has been pervasive
in almost all fields involving distancemeasurements between sets [1,
2, 8, 15, 17, 25]. Notably, it has attracted considerable interest from
the social choice community [4, 6, 12].

Among the set functions mentioned above, the Hausdorff func-
tion and the min function are both metrics, while the other two
are not, making the max and the sum functions inappropriate in
certain circumstances. A downside of the min function is that it is
computationally hard to compute winners for both utilitarian rules
and egalitarian rules, even in very extreme cases [27].

Our investigation yields plenty of complexity results. In partic-
ular, while we have hardness results for the Hausdorff function
in general, we also derive numerous polynomial-time algorithms
for several special metrics. Our overarching conclusion is that the
Hausdorff function significantly outperforms the min function in
terms of the complexity of computing winners.

Our work aligns with the literature on approval-based multiwin-
ner voting, especially with papers that investigate the complexity of
computing winning committees. We refer to the survey by Lackner
and Skowron [18] for a comprehensive overview.

2 PRELIMINARIES
For a graph 𝐺 and two vertices 𝑐 and 𝑐 ′ in 𝐺 , we use 𝑑𝐺 (𝑐, 𝑐 ′)
to denote the distance between 𝑐 and 𝑐 ′ in 𝐺 , i.e., the length of a
shortest path between 𝑐 and 𝑐 ′ in 𝐺 . A metric 𝑓 on a set 𝐶 is a
shortest-path metric (SPM) if there is a graph 𝐺 with 𝐶 being the
vertex set such that for all 𝑐, 𝑐 ′ ∈ 𝐶 , it holds 𝑓 (𝑐, 𝑐 ′) = 𝑑𝐺 (𝑐, 𝑐 ′). We
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Table 1: The W[1]/W[2]-hardness results are with respect
to the size of the winning committee. Results marked by ♦
mean that they hold even when the input election is both
candidates interval and voters interval.

shortest-path discrete star path

HD UWD W[1]-h♦ P W[1]-h NP-h
EWD W[2]-h♦ P P P

min UWD W[2]-h W[2]-h W[2]-h W[2]-h
[5] EWD W[2]-h W[2]-h W[2]-h W[2]-h
max UWD W[1]-h W[1]-h W[1]-h W[1]-h
[27] EWD P P P P
sum UWD P P P P
[27] EWD W[2]-h W[2]-h W[2]-h NP-h

call 𝐺 a graph-witness of 𝑓 . For simplicity, we call a SPM with a
complete/star/path graph-witness a complete/star/path-metric. A
complete-metric is also called a discrete metric in the literature.
Star-metrics are pertinent to scenarios where a limited number of
expensive resources need to be deployed on numerous computers
connected in a star-like network. The decisions on which com-
puters receive the resources are collectively made by a group of
experts or determined by a set of criteria, where each expert or each
criterion favors a subset of locations. Path-metrics are relevant for
scenarios where a government decides to build a new railway line
through certain cities. The locations for setting up the stations are
determined by a set of criteria or collectively decided upon by a
group of professionals.

In candidates-embedded voting, there is a set 𝐶 of candidates,
a multiset 𝑉 of votes submitted by a set of voters, and a metric
𝑓 : 𝐶 ×𝐶 → R. Each vote over 𝐶 is defined as a nonempty subset
of 𝐶 consisting of all candidates approved by the corresponding
voter. The pair (𝐶,𝑉 ) is called an election. A subset of 𝑘 candidates is
called a 𝑘-committee. A 𝑘-winners selection rule (𝑘-WSR) maps each
triple (𝐶,𝑉 , 𝑓 ) to a class of 𝑘-committees, the winning 𝑘-committees.
We study rules selecting 𝑘-committees as close as possible to the
votes, where the closeness is measured by certain set functions
𝑔𝑓 : 2𝐶 × 2𝐶 → R. These rules can be categorized into two classes:
the utilitarian rules and the egalitarian rules.

• Under a 𝑔𝑓 -utilitarian 𝑘-WSR, optimal committees are 𝑘-
committees𝑤 ⊆ 𝐶 that minimize

∑
𝑣∈𝑉 𝑔𝑓 (𝑤, 𝑣) among all

𝑘-committees of 𝐶 .
• Under a 𝑔𝑓 -egalitarian 𝑘-WSR, optimal committees are 𝑘-
committees 𝑤 ⊆ 𝐶 that minimize max𝑣∈𝑉 𝑔𝑓 (𝑤, 𝑣) among
all 𝑘-committees of 𝐶 .

Under the max set function, the distance from a committee𝑤 to
a vote 𝑣 is 𝑔max

𝑓
(𝑤, 𝑣) = max𝑐∈𝑤 (min𝑐′∈𝑣 𝑓 (𝑐, 𝑐 ′)). The Hausdorff

distance (HD) between 𝑣 and𝑤 with respect to 𝑓 is1

𝑔HD
𝑓

(𝑣,𝑤) = max{𝑔max
𝑓

(𝑣,𝑤), 𝑔max
𝑓

(𝑤, 𝑣)}.

1The original definition of Hausdorff distance applies to a much more general setting.
For a more elaborate discussion, we refer to [19].

It is obvious that𝑔HD
𝑓

(𝑣,𝑤) = 𝑔HD
𝑓

(𝑤, 𝑣).We call
∑

𝑣∈𝑉 𝑔HD
𝑓

(𝑣,𝑤)
(respectively, max𝑣∈𝑉 𝑔HD

𝑓
(𝑣,𝑤)) the utilitarian-HD (respectively,

egalitarian-HD) distance between𝑤 and 𝑉 with respect to 𝑓 .
An election is candidate interval (CI) if there is a linear order

of the candidates such that every vote approves only consecutive
candidates in the order. An election is voter interval (VI) if there is
a linear order of the votes such that for every candidate the votes
approving the candidate are consecutive in the order. These two
specific domains have received considerable attention. Particularly,
many voting problems become polynomial-time solvable when
restricted to one of the two domains (see, e.g., [10, 11, 20]).

In the paper, we study the following problems.

Utilitarian/Egalitarian-HD Winners Determination
(UWD-HD/EWD-HD)

Input: A set𝐶 of candidates, a multiset𝑉 of votes over𝐶 , a
metric 𝑓 : 𝐶×𝐶 → R, a nonnegative integer 𝑘 ≤ |𝐶 |,
and a nonnegative number 𝑠 .

Question: Is there a 𝑘-committee 𝑤 ⊆ 𝐶 such that the
uti/egalitarian-HD distance between𝑤 and 𝑉 with
respect to 𝑓 is at most 𝑠?

If we replace HD in the above definition by other set functions X,
we obtain the UWD-X and the EWD-X problems.

3 CONCLUSION
We studied the complexity of the winner determination problems
under candidates-embedded approval-based multiwinner voting
with respect to the HD. Our exploration leads to a comprehensive
understanding of the (parameterized) complexity of the problems.
Our results reveal that the HD exhibits distinct behavior in terms
of the complexity of these problems, compared to the min, the max,
and the sum functions. For instance, for the latter three functions,
the complexities of UWD and EWD stay the same when restricted
to star-metrics and restricted to discrete metrics [27]. In contrast,
UWD-HD is hard to solve when restricted to path-metrics but be-
comes polynomial-time solvable when restricted to discrete metrics.
Our results indicate that, both being metrics, the HD function out-
performs the min function concerning the complexity of computing
winners. For a more fine-grained comparison, we refer to Table 1.

We point out that all reductions established in the paper can be
carried out in polynomial time. As problems studied in the paper
are in NP, if a problem is shown to beW[1]-hard orW[2]-hard, it
is also NP-complete.

For future research, it would be intriguing to study meaningful
parameters leading to fixed-parameter tractability results. Two
natural parameters are the number of candidates𝑚 and the number
of votes 𝑛. Both UWD-HD and EWD-HD are easily seen to be FPT
with respect to𝑚. It is worth mentioning that one of our reductions
implies that EWD-HD isW[2]-hard with respect to 𝑘 even when
𝑛 = 2 and 𝑠 = 1. However, whether UWD-max and EWD-sum are
FPT with respect to 𝑛 remained open. In addition, as our research is
only theoretic-based, conducting an experimental work is another
important avenue for future research.
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