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ABSTRACT
We develop a novel multi-agent driving simulation framework
(SFDPO) so that socially friendly driving behaviors can be acquired
by agents through multi-agent reinforcement learning. We model
personal and social driving behaviors in the driver model to reflect
human driving goals and preferences. We make a game-theoretic
assumption on fair compromised solution concepts to find an equi-
librium solution under conflicts in complex interactive scenarios. A
meta-policy optimization method is adopted to leverage personal
and social driving behaviors in terms of personalized loss and so-
cialized loss to achieve a balanced Pareto optimal solution between
the socially friendly and personal preference driving goals.
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1 INTRODUCTION
As the automobile industry technology advances, the United States
Department of Transportation has posted six levels of driving au-
tomation defined by the Society of Automotive Engineers (SAE) [10].
It implies that moving vehicles on roads can comprise both human-
driving vehicles (HVs) and autonomous vehicles (AVs) without
human drivers in the near future as pointed out earlier [4, 5]. HVs
encompass diverse characteristics that can classified into personal
driving behaviors and social driving behaviors. Personal driving
behaviors [9, 18, 22, 24] are actions typically motivated by personal
goals and preferences. Social driving behaviors [14, 17, 19, 23] refer
to the interactions among AVs or HVs. When some nearby vehi-
cle changes lanes by overtaking, a human driver must respond
by an action such as either moving forward, yielding, turning, or
stopping. Since AVs without a human driver cannot yet make sub-
tle social driving behaviors coherent with that of HVs, they may
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Figure 1: The proposed SFDPO framework.

cause negative impacts on HVs. It is a challenge for AVs to co-exist
with HVs in sharing potentially conflicting road resources [1, 25].
Therefore, autonomous driving is a complex but critical multi-agent
decision-making task [2, 13, 16, 20, 21] that deserves investigation.

In general, autonomous driving involves three significant chal-
lenges: (1) Personality problem: The difficulty in simulating a va-
riety of personal driving behaviors according to different drivers’
goals and preferences that may vary over time. (2) Interactivity
problem: The lack of mutual negotiation (compromise) and commu-
nication between drivers in order to avoid deadlock or an infinite
loop due to potential conflict on using the road resources. (3) Equi-
librium problem: A traffic environment with multiple driver en-
counters may face the problem of finding a compromised solution
to balance between personal and social driving behaviors that must
be attributed to the driving policies of the drivers. Overall, we argue
that AV that can demonstrate well balance between personalized
and socially driving behaviors can also lead to a safer, more effi-
cient, as well as more friendly traffic environment. Therefore, it is
desirable to develop an efficient and effective algorithm to find the
optimal driving policy for the personal and social driving behaviors
as a whole to cope with various scenarios.

2 APPROACHES
2.1 Overview of the Proposed Framework
Figure 1 shows the overview of our framework called Socially
Friendly Driving Policy Optimization (SFDPO) in which we imple-
ment both personalized and socialized driving behavior models,
to be introduced in section 2.2 and section 2.3 respectively. The
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personalized driving behavior model discerns personal policies
aligned with different goals and preferences, while the socialized
behavior model derives social policies in facilitating cooperation or
negotiation among others. Moreover, we introduce the meta-policy
optimization notion to resolve the equilibrium problem that can
balance personal and social policies, to be described in section 2.4.

2.2 Personalized Driving Behavior Model
To simulate human personal driving behaviors, we envision that
each agent has a personal preference for certain driving features
that may change over time in response to the dynamic environment.
Therefore, we conceive the personalized driving behavior model
with both objective [6, 9, 12, 14] and subjective driving features [9].
We assume a linear-structured personalized reward function 𝑟𝑃

𝑖,𝑡

for agent 𝑖 at time step 𝑡 that is a weighted sum of selected features
as represented in Equation (1). Here, 𝝎𝑖,𝑡 = [𝜔𝑂

1,𝑖,𝑡 , 𝜔
𝑂
2,𝑖,𝑡 , ..., 𝜔

𝑂
𝑀,𝑖,𝑡

,

𝜔𝑆
1,𝑖,𝑡 , 𝜔

𝑆
2,𝑖,𝑡 , ..., 𝜔

𝑆
𝑁,𝑖,𝑡

] is the preferenceweight vectorwithM-dimensional
objective andN-dimensional subjectiveweights, whileB(𝑜𝑖,𝑡 , 𝑢𝑖,𝑡 ) =
[𝐵𝑂1 (𝑜𝑖,𝑡 , 𝑢𝑖,𝑡 ), 𝐵𝑂2 (𝑜𝑖,𝑡 , 𝑢𝑖,𝑡 ), ..., 𝐵𝑂𝑀 (𝑜𝑖,𝑡 , 𝑢𝑖,𝑡 ), 𝐵𝑆1 (𝑜𝑖,𝑡 , 𝑢𝑖,𝑡 ), 𝐵

𝑆
2 (𝑜𝑖,𝑡 ,

𝑢𝑖,𝑡 ), ..., 𝐵𝑆𝑁 (𝑜𝑖,𝑡 , 𝑢𝑖,𝑡 )] consists of the extracted objective and sub-
jective driving feature function vectors, mapping from specific
observations 𝑜𝑖,𝑡 , and actions 𝑢𝑖,𝑡 to actual rewards.

𝑟𝑃𝑖,𝑡 = R𝑃 (𝑜𝑖,𝑡 , 𝑢𝑖,𝑡 ,𝝎𝑖,𝑡 ) = (𝝎𝑖,𝑡 )𝑇B(𝑜𝑖,𝑡 , 𝑢𝑖,𝑡 ) (1)

Based on IPPO [3], we define the personalized loss as shown in
Equation (2).

L𝑃
𝑖 (𝜃𝑖 ,Ω𝑖 ) = −E𝑜,𝑢

[
min

(
𝜌𝐴𝑃

Ω𝑖 ,𝑖,𝑡
, clip(𝜌, 1 − 𝜖, 1 + 𝜖)𝐴𝑃

Ω𝑖 ,𝑖,𝑡

)]
(2)

Here, 𝜃𝑖 and Ω𝑖 denote the parameters associated with the policy
and generated preferenceweightsmodels.𝐴𝑃

Ω𝑖 ,𝑖,𝑡
is the personalized

advantage. The clipped importance sampling factor is defined as
𝜌 =

𝜋𝑖,𝑛𝑒𝑤 (𝑜𝑖,𝑡 |𝑢𝑖,𝑡 )
𝜋𝑖,𝑜𝑙𝑑 (𝑜𝑖,𝑡 |𝑢𝑖,𝑡 ) , where 𝜋𝑖,𝑜𝑙𝑑 and 𝜋𝑖,𝑛𝑒𝑤 are the policies that

generate the samples and the updated policy respectively.

2.3 Socialized Driving Behavior Model
The main challenge of determining proper personalized driving
behaviors under socially friendly interactions is the acquisition of
the weights of subjective driving features. We therefore propose
the group-based socialized driving behavior model based on game
theory and Nash equilibrium [11]. It aims at acquiring the optimal
weights and driving strategy (the group-based joint action) to fa-
cilitate friendly interactions among agents. We focus on finding
a consensus solution for a group as a Nash equilibrium solution.
However, it may not always exist in real scenarios. Thus, we assume
a loss-sharing concept to find a compromised solution, where all
agents in the same group can come up with a driving strategy com-
bination as the hypothesized consensus solution of all group agents
under situations. The loss-sharing compromised solution is to bal-
ance agents’ expected personalized rewards and losses. It turns
out that we can obtain the fairer group-based socialized reward
through simulation. It shows that group agents can acquire their
optimal driving policies in terms of preference weight vector 𝝎𝑖,𝑡

that best aligns with the personality of agent 𝑖 and the correspond-
ing scenario while at the same time enhance the group reward. The
concept of preference advantage, denoted as 𝐴𝑝𝑟𝑒 𝑓 𝑒𝑟

Ω𝑖 ,𝑖,𝑡
, regarding

Table 1: Comparison against baseline methods.

Scenario Metrics IPPO CoPO SFDPO

Crossing
Success Rate (%) 59.38 46.88 100.00
Disparity Ratio 1.92 1.51 1.00

Deadlock Number 6.00 23.25 0.00

mapping the subjective driving features into the socialized loss
to update Ω𝑖 proposed. The resulting socialized loss is denoted in
Equation (3), where 𝐴𝑆

𝑖,𝑡
is the socialized advantage, and 𝜆𝑝𝑒𝑟 𝑓 𝑒𝑟 is

the hyperparameter that can be adjusted to aid optimization.

L𝑆
𝑖 (𝜃𝑖 ,Ω𝑖 ) = − E𝑜,𝒖

[
min

(
𝜌𝐴𝑆

𝑖,𝑡 , clip(𝜌, 1 − 𝜖, 1 + 𝜖)𝐴𝑆
𝑖,𝑡

)]
− 𝜆𝑝𝑒𝑟 𝑓 𝑒𝑟E𝑜,𝒖 [min

(
𝐴
𝑝𝑟𝑒 𝑓 𝑒𝑟

Ω𝑖 ,𝑖,𝑡

)
] (3)

2.4 Meta-policy Optimization
To establish a safe, efficient, and friendly environment, the goal is
to determine the optimal driving policy 𝜋∗

𝑖
for each agent 𝑖 , cor-

responding to both parameters 𝜃∗
𝑖
and Ω∗

𝑖
. This policy is intended

not only to minimize both personalized and socialized losses but
also to strike a balance between these losses. Thus, we introduce a
meta-policy optimization methodology comprising two levels: the
object and the meta levels. For the object level, we employ a sequen-
tial procedure to update L𝑃 (𝜃𝑖 ,Ω𝑖 ) and L𝑆 (𝜃𝑖 ,Ω𝑖 ). For the meta
level, there are two learners: the base learner, which emphasizes
specific losses parameterized by 𝜃𝑖 , and the meta-learner, which
ensures that the base learner can adapt to different losses parameter-
ized by Ω𝑖 . Consequently, the meta-policy optimization approach
iteratively searches for a balanced Pareto optimal solution.

3 EXPERIMENTS
We conduct the experiments in the crossing scenario [1, 7, 8] and
compare the performance of SFDPO against two previous MARL
baseline models based on Proximal Policy Optimization (PPO) [15],
IPPO [3] and CoPO [14]. Three general-purpose metrics are defined.
The success rate is measured as the ratio of the number of agents
successfully reaching their goals against the total number of agents
participating. The disparity ratio is defined as the ratio of the high-
est velocity against the lowest one among agents in an episode.
Deadlock number is the number of deadlock occurrences in a sce-
nario. As shown Table 1, the proposed SFDPO achieves an average
performance improvement against CoPO [14] by an increase of
success rate 53.12%, and likewise by a reduction of disparity ratio
33.77% and number of deadlocks 100%.

4 CONCLUSION
SFDPO allows AVs with MARL to acquire proper driving policies
that lead to better social driving behaviors in facing with various
conflicting scenarios. The meta-policy optimization method tends
to leverage personal driving behaviors and social driving behav-
iors and can find a balanced Pareto optimal solution between two
optimization objectives, personalized loss and socialized loss.
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