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ABSTRACT
Existing Deep Reinforcement Learning (DRL) algorithms address
the 3D Bin Packing Problem (3D-BPP) by decomposing the packing
action into three sub-stages. However, this three-stage scheme
makes it necessary for information to be passed between sub-
networks, which may increase the computational cost of training
and inference. This paper proposes a two-stage DRL algorithm,
combining index and orientation into a single sub-stage to simplify
learning. Additionally, a Bidirectional Cooperative Packing (BCP)
method is introduced to compress the action space during position
selection while retaining exploration capability. The experimental
results show that the two-stage DRL algorithm, which incorpo-
rates BCP, achieves 0.3%-1.7% improvement in space utilization
compared to the currently best-performing algorithm.
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1 INTRODUCTION
3D Bin Packing Problem (3D-BPP) is a classic combinatorial op-
timization problem [2]. It primarily focuses on packing a set of
known-size rectangular items into single or multiple rectangular
bins, subject to specific constraints, aiming to maximize the space
utilization of the bins. Due to its NP-hard nature, finding the exact
optimal solution for 3D-BPP is challenging [14], especially with
a large number of items or large-sized bin. Previous studies have
primarily used heuristic algorithms [5, 7, 11] or metaheuristic algo-
rithms [1, 9, 16] to approximate the optimal solution.

Recently, with the rapid progress in the field of Deep Reinforce-
ment Learning (DRL), researchers have explored applying DRL to
solve 3D-BPP [4, 8, 10, 12, 13, 15, 18, 20, 21]. To address the chal-
lenges posed by large-scale action spaces, most of the end-to-end
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DRL algorithms decompose the packing action into three selec-
tion sub-stages of index, orientation, and position. However, this
three-stage scheme makes it necessary for information to be passed
between sub-networks, which may increase the computational cost
of training and inference, and also introduce the possibility of error
propagation. On the other hand, most algorithms tend to compro-
mise exploration capability or increase computational complexity
to reduce the action space for position selection. This trade-off may
negatively impact the performance of the network.

In this paper, we propose a two-stage scheme and a Bidirectional
Cooperative Packing (BCP) method to streamline the decision-
making process and encourage exploration of reasonable positions
while compressing the action space. Experimental results demon-
strate that our algorithm achieves state-of-the-art performance.

2 METHOD
We solve a variant of offline discrete 3D-BPP, where the height of
the bin is adjustable as packed items. The goal is to find a packing
strategy that minimizes the height of the bin after all items are
packed inside. The packing strategy must adhere to the following
constraints: 1) the items packed in the bin must not overlap with
each other; 2) the items must not exceed the boundaries of the bin;
3) the items can only be placed in an orthogonal manner.

We represent the packing state at each step 𝑡 as 𝑠𝑡 = (𝑠𝐼𝑡 , 𝑠𝐵𝑡 ),
where 𝑠𝐼𝑡 and 𝑠

𝐵
𝑡 correspond to the item state and bin state, respec-

tively. For 𝑠𝐼𝑡 , we use a sequence of size information for all un-
packed items, obtained by rotating them in six different directions,
to describe it: 𝑠𝐼𝑡 = {𝑏𝑖,1, 𝑏𝑖,2, 𝑏𝑖,3, 𝑏𝑖,4, 𝑏𝑖,5, 𝑏𝑖,6 |𝑖 ∈ {1, 2, . . . , 𝑛}},
where 𝑏𝑖,1 = (𝑙𝑖 ,𝑤𝑖 , ℎ𝑖 ), 𝑏𝑖,2 = (𝑙𝑖 , ℎ𝑖 ,𝑤𝑖 ), 𝑏𝑖,3 = (𝑤𝑖 , 𝑙𝑖 , ℎ𝑖 ), 𝑏𝑖,4 =

(𝑤𝑖 , ℎ𝑖 , 𝑙𝑖 ),𝑏𝑖,5 = (ℎ𝑖 , 𝑙𝑖 ,𝑤𝑖 ),𝑏𝑖,6 = (ℎ𝑖 ,𝑤𝑖 , 𝑙𝑖 ), 𝑙𝑖 ,𝑤𝑖 , ℎ𝑖 represent the
length, width, and height of the 𝑖-th unpacked item,𝑛 represents the
number of unpacked items. For 𝑠𝐵𝑡 , we use a top-down view of the
bin to describe it. We represent the packing action as 𝑎𝑡 = (𝑎𝑖𝑜𝑡 , 𝑎

𝑝
𝑡 ),

where 𝑎𝑖𝑜𝑡 determines which item to select and the orientation for
packing, and 𝑎𝑝𝑡 determines where to place the item.

At each step 𝑡 , the two-stage policy network takes the packing
state 𝑠𝑡 as input and outputs a probability distribution 𝜋 (𝑎𝑡 |𝑠𝑡 )
over the possible packing actions. As shown in Figure 1, the policy
network follows an encoder-decoder architecture, comprising two
encoders and two decoders. Specifically, the backbone networks
for the Item Encoder, Index-Orientation Decoder, and Position De-
coder employ the Transformer structure [17], while the Bin Encoder
utilizes a Convolutional Neural Network (CNN).

Item Encoder takes item state 𝑠𝐼𝑡 as input and encodes it into an
item feature sequence 𝒉𝐼𝑡 of dimension 6𝑛 ×𝑑𝑚 . In the Transformer
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Figure 1: The architecture of the policy network.

structure, we apply a mask to the Multi-Head Self-Attention to
avoid calculating the correlation between the embeddings of the
same item as they cannot coexist in the bin. Bin Encoder takes
bin state 𝑠𝐵𝑡 as input and encodes it into a bin feature vector ℎ𝐵𝑡
of dimension 𝑑𝑚 . Index-Orientation Decoder takes 𝒉𝐼𝑡 and ℎ𝐵𝑡 as
input and generates the policy 𝜋 (𝑎𝑖𝑜𝑡 |𝑠𝑡 ), described as a probability
distribution over actions 𝑎𝑖𝑜𝑡 . It should be noted that to make the
dimension of the policy 𝜋 (𝑎𝑖𝑜𝑡 |𝑠𝑡 ) equal to 6𝑛, here 𝒉𝐼𝑡 is used as
the query instead of the key-value. To distinguish the selected item
from all unpacked items, we sample the index and orientation from
the generated 𝜋 (𝑎𝑖𝑜𝑡 |𝑠𝑡 ) and find the corresponding embedding in
𝒉𝐼𝑡 . We denote the found embedding asℎselected𝑡 , and the embeddings
of the other items as 𝒉leftover𝒕 . Position Decoder generates policy
𝜋 (𝑎𝑝𝑡 |𝑠𝑡 , 𝑎𝑖𝑜𝑡 ) based on the above known conditions. 𝒉leftover𝒕 and
ℎselected𝑡 + ℎ𝐵𝑡 are fed into a Transformer decoder as key-value and
query, respectively, and the result is passed through several linear
layers followed by a softmax function to obtain 𝜋 (𝑎𝑝𝑡 |𝑠𝑡 , 𝑎𝑖𝑜𝑡 ).

The size of action space for 𝑎𝑝𝑡 increases significantly for pack-
ing problems with large-sized bins (e.g., 10,000 possibilities for a
100 × 100 bin), which increases computational complexity. To ad-
dress this issue, we propose the Bidirectional Cooperative Packing
(BCP) method. The core idea is to use a single policy network and a
single value network to generate policy and value for both two direc-
tions, by controlling the transposition of the bin view. First, the pol-
icy network takes two states, 𝑠1𝑡 = (𝑠𝐼𝑡 , 𝑠𝐵𝑡 ) and 𝑠2𝑡 = (𝑠𝐼𝑡 , (𝑠𝐵𝑡 )T), as
inputs, and generates corresponding policies 𝜋 (𝑎1𝑡 |𝑠1𝑡 ) and 𝜋 (𝑎2𝑡 |𝑠2𝑡 ).
𝑎1𝑡 = (𝑎𝑖𝑜,1𝑡 , 𝑎

𝑝,1
𝑡 ) represents the packing action in y- direction via

unidirectional packing[20]. Since 𝑎2𝑡 = (𝑎𝑖𝑜,2𝑡 , 𝑎
𝑝,2
𝑡 ) is generated

based on the transpose of 𝑠𝐵𝑡 , it represents a different packing ac-
tion in x- direction. Then, 𝑎1𝑡 and 𝑎

2
𝑡 are sampled, and the two items

selected by 𝑎𝑖𝑜,1𝑡 and 𝑎𝑖𝑜,2𝑡 are packed in respective directions using
the unidirectional packing method [20], resulting in two next states
𝑠1
𝑡+1 = (𝑠𝐼 ,1

𝑡+1, 𝑠
𝐵,1
𝑡+1) and 𝑠

2
𝑡+1 = (𝑠𝐼 ,2

𝑡+1, (𝑠
𝐵,2
𝑡+1)

T). Finally, the value net-
work calculates𝑉 (𝑠1

𝑡+1) and𝑉 (𝑠2
𝑡+1), and the final action is obtained

by comparing the two values: 𝑎𝑡 = argmax𝑎∈{𝑎1𝑡 ,𝑎2𝑡 } 𝑉 (𝑠𝑡+1).

3 EXPERIMENTS
For comparison with previous studies, we adopt a standard proce-
dure to randomly generate packing instances for both training and
testing purposes. Specifically, five types of instances are randomly

Table 1: Comparison results on I1 - I5.

Algorithm I1 I2 I3 I4 I5

GA+DBLF [19] 70.2% 69.4% 66.3% 61.4% 58.7%
EP [3] 62.7% 63.8% 66.3% 63.3% 60.1%
LAFF [6] 58.6% 59.1% 61.9% 58.0% 55.4%
EBAFIT [10] 65.4% 65.9% 66.1% 62.8% 60.5%
MTSL [4] 62.4% 60.1% 55.3% 50.8% 46.9%
CQL [13] 67.0% 69.3% 73.6% 58.7% 57.5%
JIANG [10] 73.5% 76.9% 82.0% 75.2% 70.5%
QUE [15] 77.5% 80.4% 83.4% 80.5% 76.7%
OUR 79.2% 81.5% 84.1% 80.8% 77.1%

generated, where the total number of items 𝑁 is 20, 30, 50, 50, and
50, and the bin size is 100 × 100, 100 × 100, 100 × 100, 200 × 200,
and 400 × 200, respectively. We denote these five instances as I1
- I5. The length, width, and height of each item are randomly se-
lected as integers from the range [𝐿/10, 𝐿/2], [𝑊 /10,𝑊 /2], and
[min(𝐿/10,𝑊 /10),max(𝐿/2,𝑊 /2)], where 𝐿 and𝑊 represent the
length and width of the bin.

We compared the following algorithms on I1 - I5: 1) GA+DBLF
[19]; 2) EP [3]; 3) LAFF [6]; 4) EBAFIT [10]; 5) MTSL [4]; 6) CQL
[13]; 7) The algorithm proposed by Jiang et al [10]; 8) The algorithm
proposed by Que et al [15]. The experimental results are shown
in Table 1. The values in the table refer to the space utilization
rate achieved by the algorithms. For each type of instance, we
record the utilization on 1024 instances and calculate the mean
value. Following the works of [10, 15], for I1 - I3, 128 solutions are
sampled from the network and the best one is outputted as the final
result, while for I4 and I5, the number of sampled solutions is 16.

From the results shown in Table 1, we can observe that for a
wide range of item numbers and bin size, our algorithm outper-
forms the other algorithms in terms of space utilization, indicating
its superiority in generating more effective packing solutions. We
also conduct ablation studies for the two components of our algo-
rithm: the two-stage scheme and the BCP method. Due to space
constraints, only the experimental results are presented here. The
results show that the absence of two-stage scheme and BCP results
in a decrease of space utilization calculated by the corresponding
algorithm, indicating that both components play a crucial role in
the effectiveness of our algorithm.

4 CONCLUSION
In this paper, we introduced an end-to-end DRL algorithm to solve
offline 3D-BPP with a large-sized bin. Our approach features a
novel two-stage scheme and a Bidirectional Cooperative Packing
(BCP) method, both of which enhance the learning effectiveness
of the policy network. We demonstrate by experiments that our
two-stage DRL algorithm, which incorporates BCP, achieves new
state-of-the-art results for the packing problem with a large-sized
bin and randomly generated items. For future work, we will focus
on solving packing problems under other practical constraints.
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